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Preface 

 

The aim of this book is to give bachelor students in the behavioral sciences an 

introduction to basic models for latent variables, so that the student can use these 

models in the construction of scales from items. I discuss successively the following 

topics: factor analysis, internal consistency reliability (removed: IRT). 

It is questionable to use factor analysis for item analysis, but nevertheless this is the 

most common technique for item analysis in psychology. Moreover, some important 

psychological theories are based on factor analysis. Therefore, factor analysis must still 

be discussed. 

A step-by-step description is given that focuses on practical application. The format 

of an 'basic report' and 'concise report' (= ‘short report’) is followed, which was also 

used in the earlier books of the series. On the other hand, theoretical backgrounds and 

problems are also discussed, such as the problem of determining the number of factors 

and the relatively large subjective component of the conclusions in factor analysis. 

The book tries to be a step towards the use of structural equation models. For 

example, the use of the chi-square test and fit sizes such as RMSEA is discussed, as 

well as the limitations thereof. 

I have opted for a level such that the student can actually apply it on real data. On 

the other hand, the study load had to be limited. That is why the range of topics is not 

particularly wide. 

This book is based on a Dutch book that has been used and improved for several 

years in the course ‘Psychometrics and Decision Theory’ of the second year of the 

bachelor's program in Psychology at the Radboud University.  

 

Jules L. Ellis 

Nijmegen, December 2017 
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1 Constructing tests, scales and 

questionnaires 
 

1.1 Use of the terms test and scale 

First, let us try to stipulate these terms. A measuring instrument is any method that 

will lead to quantitative data. A test is a measuring instrument consisting of multiple 

components called items, from which a single total score is derived for each 

individual. A questionnaire can also be a test, if a total score is calculated. A test is 

not necessarily a performance test; it can also be a measuring instrument for attitudes, 

emotions and social behaviour. To prevent confusion, the word scale is often used 

instead of test. Both test and scale are also used for measuring instruments that consist 

of multiple, coherent tests, which are then called subscales or subtests. However, the 

word scale is also used to designate a test whose items go together well. A scale that 

consists of subscales should be called a measuring instrument, while its subscales 

should be called scales. The long and short of it is: everyone uses their own 

nomenclature. Why would we break with this great tradition? 

1.2 Phases in a validation study 

When constructing a test, the first step is to study its validity and reliability. Obviously, 

this should be done before the test is actually used. We will call this kind of study a 

validation study. In a validation study, the following steps are often addressed. The 

main points (1, 2, …) are in chronological order, while the order of subpoints (a, b, …) 

within a main point is of lesser importance. One could write an entire book on each of 

these points. 

1 Preparation 

a Choice of the kind of properties that will be measured. In principle, a separate 

subscale of multiple items should be made for each psychological property. 

b Exploration of the domain using literature and interviews. Let's say you want a 

scale for aggression, for example. You could investigate whether such a scale already 

exists in literature and whether the scales that exist can be used in your case. The use of 

pre-existing scales increases the comparability of your study. If your conclusion is that 

you need to create a new scale after all, you would do well to delve into what 

properties are often seen as expressions of aggression. This will serve as the starting 

point to come up with the items. Additionally, it will not hurt to talk with persons from 

the target group beforehand, to get an idea of what is going on in that area. 
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2 Formulating the items 

During this process, there should be a constant evaluation of the extent to which it may 

be expected that the items are suitable on substantive grounds. In this process, the 

following facets will be addressed, among others. 

a Content of the individual items. Each item should clearly fit within the chosen 

domain. If you create a scale for aggression, you should not add an item that depends 

on characteristics other than someone's aggression, such as 'when things are not going 

well at work, I have a higher tendency to make hurtful remarks toward my partner'. The 

answers to that question will also depend on the situation of a person in whether they 

have a job and a partner. 

b Representativity of the collection of items. Together, the items should form a 

good representation of the domain. A scale for aggression should not only contain 

questions about aggression during going out, but also in school, at work and at home. 

Please note that this could conflict with point (a). 

c Number of items. Each subscale should have enough items, whilst keeping in 

mind that 30% of the items might get dropped during analysis. It is hard to say exactly 

when there are 'enough items', but a scale with less than 10 items is not impressive. 

Consider that even an exam with 40 multiple-choice items with 4 answer categories is 

still quite unreliable, since someone with a true score of 5 on a scale of 0 to 10 has 95% 

chance for a score between 3 and 7 (Ellis, 2004, p. 236). As the test becomes more 

important –  it could lead to important decisions on the individual, for example  –  

higher requirements should be set for the number of items. A practical limitation is that 

an overly large number of items could cause the test takers to answer the items less 

seriously. 

d Precise formulation of the items. The items should not be open to 

interpretation. The formulation should be adapted to the target group and the aim of the 

measurement in terms of intelligibility and language. A well-known example is the rule 

that one should avoid double negatives. Whether that is a good rule is debatable. If you 

interviewed random school children in the village of Groesbeek about their experience 

with the local snack bar, it probably would be. In the case of an exam for law students, 

however, this would be a foolish rule, as juridical texts are full of quintuple negatives, 

and the exam is meant to gauge whether the students understand such formulations. 

e Content and number of answer categories. The answer categories should be 

chosen in such a way that a reasonable variation can be expected. Items to which most 

people will provide the same answer are not informative. If you asked the student 

population In Rotterdam 'how often do you go to church', the answer categories 'less 

than once a week / once a week / twice a week or more' would probably be useless, 

whereas the same might be distinctive in a strict Christian village. A small number of 

answer categories will lead to the answers containing little information. The usually 

recommended number of answer categories is between 5 and 7. 
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f Expert opinion. At this stage, it is advisable to ask a panel of experts for their 

opinion on the items. As an example: in 2007, I was involved in the construction of a 

questionnaire to measure the innovative strength of healthcare groups. Several 

organisations and advisors in the Netherlands have specialised in the stimulation and 

guidance of innovation. Such people have been working with innovations for years, so 

you might expect they would know something about it. Therefore, a part of the 

construction was inviting a group of experts in the field of innovation to discuss the 

items. The central question in this discussion was whether the items captured the 

notion of 'innovation'. 

3 Planning the first administration 

The first administration will yield data based upon which the scale can be adjusted, if 

necessary. During the planning, thought should be put into the way those data will be 

analysed and which kind of data will be needed for the analyses. The following points 

should be taken into consideration. 

a Make use of multiple raters. If observers or raters are involved, the inter-rater 

reliability should also be determined. To achieve this, it is necessary to use multiple 

raters for a single subject (= test taker). 

b Other variables that must be measured. These include background variables 

and related measuring instruments. 

c Required number of subjects. The number of subjects required depends in part 

on the statistical properties of the data that are acquired (MacCallum, Browne & 

Sugawara, 1996). When applied on scale construction, a minimum of 100 subjects 

would be necessary. However, Barrett (2007) states that each article with a structural 

equation model (the kind of model that is also used in scale construction) with less than 

200 test subjects should be rejected anyhow. Wirth and Edwards (2007) also suggest 

that a minimum of 200 test subjects is needed. Some analyses, however, require a 

minimum of 1000 subjects (Flora & Curran, 2004). 

4 First administration of the scale 

During this step, the first data are collected that will be analysed in the following steps. 

5 Analysis of data of individual items 

This is actually akin to a prewash or preselection, during which the worst items are 

removed. 

a Inter-rater reliability of items. If the items are based on observations or 

assessments, then it should be determined that different observers have a high degree 

of agreement. Because if they cannot agree on the elementary data, you might as well 

drop the item. The agreement is usually determined using Cohen's kappa or with an 

intraclass correlation. 
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b Variance of the items. Items with a lower variance are usually less suitable as 

they contribute little to the differentiation of subjects. If I were to ask an exam question 

such as 'What is 1 + 1?', everyone would give the correct answer (variance 0) and I 

might just as well not ask the question. A question that everyone will get wrong is 

equally uninformative. Items with a low variance will often make a small or even 

negative contribution to the reliability. As a limit, it is suggested that items that are 

scored in integers have a variance of at least 1. However, this is not a hard-set limit, 

and no single limit is fully justifiable. My advice is to remove items if their variance is 

zero, as well as based on factor analysis, IRT analysis or reliability analysis, but not 

based on their variance. 

c Skewness and unimodality of the distribution of the items. Large discrepancies 

in the skewness of items have an influence on the correlations and thus on the results of 

the factor analysis. In most forms of factor analysis, the assumption is made that the 

items follow a normal distribution. As items usually have a small number of discrete 

answer categories (such as 0-1-2-3-4), these cannot be normally distributed. 

Nevertheless, it is useful to keep the deviations as small as possible by removing items 

that strongly deviate from symmetry and unimodality. (Unimodal means that the 

histogram looks like a bell, not like a bathtub.) 

6 Analysis of the relations between the items 

The question here is whether the items measure the same property. This is also called 

unidimensionality or homogeneity. This is important to justify summarising the items 

scores into a single total score per subject. 

a Correlations between the items. Items of the same scale should correlate 

positively (with the added note that items may be mirrored based on their content). 

This is because they essentially should measure the same trait. 

b Factor analysis of the items. This analysis is a more detailed study of whether 

the correlations between the items justify believing that the items measure the same 

trait. If the items turn out not to be unidimensional, the scale might have to be split into 

subscales, or items might have to be removed.  

c Analysis of the internal consistency reliability. In this analysis, it is 

investigated whether the scale contains enough items to allow the sum score to be seen 

as a reliable measurement. How many items are required also depends on the strength 

of the correlation between the items. In addition, items with a negative contribution to 

the reliability are removed from the scale.  

7 Establish norms 

In this step, you investigate what the averages, standard deviations and percentiles are 

for the groups to be differentiated. This is done to describe which scores are ‘normal’ 

in the studied population. 
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8 Analysis of the relations of the test scores to other variables 

This is often only done in later administrations of the test. It is a continuous process of 

elaboration of the information about the test. 

a Test-retest reliability. With this, the stability of the scores over time is 

investigated. The scores do not always need to be stable; that depends on the construct 

and the theories on its subject. For example: a test that aims to measure the state of 

mind on a specific day will not necessarily yield the same result a year later. But it is 

generally useful to know the stability. 

b Criterion validation. With this, the extent to which the test can predict other 

variables is investigated. The aim hereof is to substantiate the practical use of the test. 

c Construct validation. With this, it is investigated whether the test has the 

theoretically expected relations. This is mainly about the theoretical interpretability of 

the test. 

 

In the following chapters, we will only consider the aspects in point 6. A central notion 

therein is the 'unidimensionality', which we will now introduce. 

1.3 Unidimensionality 

In simple words, unidimensionality means that items measure the same thing. This 

can be seen as a part of construct validity. Construct validity means that the items 

measure the intended construct, and this implies that they all measure the same. The 

kind of data needed to assess unidimensionality is more akin internal consistency 

reliability, however. Unidimensionality also has an influence on that reliability. 

As was noted in the previous section, unidimensionality is needed to justify that 

item scores are summarised into a single total score per subject. This requires some 

elaboration. It might seem fully obvious to add up item scores. But how do you know 

which scores you can add up? Can you add depression items to intelligence items? No, 

of course you cannot. Not any more than you can add up apples and pears. But then, 

how do you know that none of the existing tests are adding up apples and pears? As a 

test constructor, you might think that items fit well together, but do the data reflect 

that? Would you still think two items measure the same thing if they turn out to have a 

negative correlation? 

We use tests to quantify human behaviour, and it is not at all obvious that this is 

meaningful. Some people are deeply offended when you try to compress their beautiful 

feelings into nasty numbers. And they might be right, because whence comes the idea 

that it is reasonable to do so? It is true that we have been summing up scores in various 

tests for the past century, but that does not mean it is sensible. 

The crucial question is to what extent the sum score presents a good summary of the 

behaviour that the subject showed during the test. In other words: to what extent the 

item scores are summarised adequately. For example, assume a questionnaire consists 
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of 50 yes/no questions, which we code with a 0 (no) and 1 (yes). Someone with a sum 

score of 25 therefore answered 'yes' 25 times. But without additional information, we 

still do not know to which questions the subject answered yes. These could be the first 

25 questions just as well as the 25 last questions. Or only the odd-numbered questions. 

It is therefore conceivable that, in a group of subjects with the same total score, two 

subgroups exist that show an exactly opposite behaviour: the questions that one group 

answers with a 'yes', are answered with a 'no' in the other group. In such a case, the sum 

score is not a good summary of the item scores. If the concerned questionnaire would 

be about aggression, it might mean that there is not just one type of aggression, but at 

least two different types, for example direct and indirect aggression. The consequence 

of this is that one should not use a single test score per subject, but at least two 

different test scores. Research into unidimensionality therefore forces psychologists to 

differentiate their concepts (in this example: aggression into direct and indirect 

aggression) if the data gives reason to do so. This also prevents the all too easy addition 

of items that are actually different. 

In the above paragraph, you saw an example in which a sum score was not a good 

summary of the item scores. So, when is the sum score a good summary of the item 

scores? That is the case when subjects with the same sum score generally have about 

the same item scores, apart from a random noise. The models used to investigate 

unidimensionality describe this in great detail. Most of these models make the 

following assumptions: 

1. Unidimensionality. Each person can be characterised by a single value that 

indicates to what extent that person has the trait that we want to measure. This 

value is generally unknown and is therefore called the latent trait. For an 

intelligence test, this would be someone's unknown true intelligence, and for a 

depression scale, it is someone's unknown true depression. That value is 

generally indicated by  (the Greek letter theta), but in some cases, it is also 

indicated by  (the Greek letter tau, for ‘true score’). 

2. Monotonicity. The expected score for an item increases with . If the score for 

item i is indicated by Xi and the expected value by E (for expectation), the 

following then holds: 

 

E(Xi | ) = fi() 

 

where fi is an increasing function. Here, E(Xi | ) denotes the average of Xi in 

the subpopulation of subjects with score  on the latent trait. 

3. Local independence. Within a group of subjects with the same value of , the 

items are not correlated. In the total population, high correlations between 

items are allowed. 
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For example: someone who has a low aggression should have a low score on all items 

used (except for noise), and if that subject's aggression increases, this should show in 

all items. Another example is a written exam. It is desirable that good students have a 

better chance on all questions. An exam question on which good students score poorly 

– that is, a question on which one scores worse the better one knows the subject matter 

– is undesirable. 

Unidimensionality and monotonicity cannot be distinguished empirically. If you 

would only assume unidimensionality, without monotonicity or something alike, it 

would not be testable (Sijtsma & Junker, 2006, p. 86). The same applies to local 

independence. For this reason, the term unidimensionality is often used for the three 

assumptions jointly. The word therefore has two meanings. 

In the text above, it was suggested that unidimensionality, monotonicity and local 

independence can be tested together. How can that be done? A simple prediction 

following from the aforementioned assumptions is: all items of the scale should have 

non-negative correlations (Mokken, 1971; Mokken & Lewis, 1982; Holland & 

Rosenbaum, 1986; Ellis & Junker, 1997; Junker & Ellis, 1997; Junker & Sijtsma, 

2001b). 

What is the difference between unidimensionality and internal consistency 

reliability? Unidimensionality implies that the items measure the same trait, save for 

noise, but it does not say anything about the size of the noise component. Internal 

consistency reliability says something about the size of the noise in the total score, but 

does not give an answer to the question whether the items measure the same trait. For 

example: the arithmetic items '3 + 4 = ?' and '5 + 2 = ?' are unidimensional, but their 

total score is not reliable because there are only two items. Conversely, the total score 

of an IQ test usually has a high reliability, but intelligence is not unidimensional, 

because there are various types of intelligence (such as fluid intelligence and 

crystallized intelligence). 





 

2 Conducting and reporting factor 

analysis 
 

2.1 Background 

Factor analysis is a statistical method mainly developed by psychologists to study the 

empirical patterns of psychological test scores. The method was first developed by 

Spearman (1904a, 1927) in his research into intelligence. Later, the method was 

extended by Thurstone (1931, 1938), also in intelligence research. In personality 

theory, factor analysis has become known through the 16-factor theory of Cattell 

(1950; Cattell, Eber & Tatsuoka, 1970) and the now popular Big Five theory (McCrae 

& Costa, 1987). Nowadays, factor analysis is also used in other scientific areas, such as 

economics. 

 In psychology there are a number of fairly different goals for which factor 

analysis is used: 

1. The first possibility is to describe theoretically a specific domain, for example 

performance on cognitive tasks. The outcomes of factor analysis are then part 

of a theory. In this context, a so-called confirmatory factor analysis will 

usually be used, which means that the theory will be tested. 

2. The second option is to use factor analysis to gain insight into a domain, 

without any theory in advance. In that case, one speaks of exploratory factor 

analysis. There is no theory in advance, but the goal is to develop a theory. 

3. The third option is to use factor analysis to limit the number of variables. In 

that case there is no theory in advance and there is no goal to develop a theory. 

In this case factor analysis is a form of data reduction. This can be important, 

for example, if the number of variables is so large that the overview is lost, or 

if other analyses lose a lot of power. For example, MANOVA uses a kind of 

factor analysis to limit the number of dependent variables. 

In this book we will mainly focus on the use of factor analysis in test validation. Factor 

analysis is then used to examine the construct validity. This can be both confirmatory 

and explorative. In addition, it can be done on two levels of data: 

a. Level one is to examine the relation of the total score of the test with the total 

scores of other tests. For example: the relationships between the subtests of an 

intelligence test such as the WAIS can be investigated in order to check 

whether they correspond with the Cattell-Horn-Carroll theory of intelligence. 

b. Level two is to examine the relationships between the item scores within the 

test. This is done in the construction phase of the test. The question here is 
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whether the items are unidimensional. In other words, the question is whether 

the items fit together, and whether the data can be adequately summarised by 

using only one test score per person. These analyses logically precede analyses 

of the total scores. 

In this chapter we will mainly focus on this last level, the use of factor analysis in item 

analysis in test construction. However, it is far from undisputed to use factor analysis 

for item analysis. Many psychometricians (which I define for convenience as people 

who publish in the journal Psychometrika) believe that Item Response Theory (IRT) 

should be used for this purpose and that factor analysis is an inferior and outdated 

method for this purpose. The reasons to still teach factor analysis in test construction 

are 

- In most publications in psychology in which a new measuring instrument is 

developed, factor analysis is still used (Ten Holt, Van Duijn & Boomsma, 

2010). 

- Factor analysis is available in the widespread package SPSS, while IRT is not. 

IRT is available in the package R, but that might require more effort to learn. 

And of course this is a vicious circle. Psychologists do not want to use IRT because 

nobody does it because it is not in SPSS because psychologists do not want to use it. 

 In any case, in the following chapters you will learn what is currently 

customary in test validation, and then you are actually about half a century behind 

(Borsboom, 2006, p. 425). Factor analysis is in itself an excellent technique and not 

outdated, but as a method for item analysis it is dubious. We will, however, also deal 

with other applications in which factor analysis is adequate. In later chapters we will 

also deal with IRT. 

 Incidentally, factor analysis and IRT are conceptually largely the same. In both 

cases, the question is whether the items fit together and measure the same. The main 

difference is that factor analysis is based on normally distributed variables and linear 

relationships, while in IRT the starting point is categorical variables with non-linear 

relationships. 

2.2 Learning objectives of this chapter 

After studying this chapter, you can apply a factor analysis on items in a validation 

study in order to 

- assess unidimensionality, and if necessary 

- divide the items into subscales, and 

- identify unusable items. 

In particular you can 

- indicate whether an exploratory or confirmatory factor analysis is desirable; 

- explain the purpose of that analysis; 

- perform the factor analysis with SPSS as far as possible; 



Chapter 2 – Conducting and reporting factor analysis 13 

 

- thereby motivating the extraction method and the rotation method; 

- draw conclusions about the number of factors on the basis of the output and 

motivate that conclusion; 

- give a substantive interpretation of the factor pattern based on the output; 

- on this basis draw a conclusion about the unidimensionality of a scale; 

- use the factor pattern to divide the items into subscales and identify which 

items are useless. 

In addition, you can make a more or less extensive report, which will be referred to as a 

'basic report' and a 'concise report' respectively. Finally, it is desirable that you have 

some insight into the relation between factor loading and correlations, and you can 

- on the basis of a loading plot with two orthogonal factors, estimate what the 

reproduced correlations of the manifest variables are ('visualise'). 

2.3 Definition of an basic report of a factor analysis 

As in the statistics books on which this book elaborates (Ellis, 2003a, 2003b), we say 

that a basic report is an extensive point-by-point report of the analysis. In the case of a 

factor analysis, this should contain the same parts as in the previous books: 

 

Design 

Degree of control 

Aggregate data 

Hypotheses 

Analysis method 

Estimates 

Test statistics 

Decision 

Interpretation 

 

The most important parts of this are reflected in a concise report. This will be discussed 

at the end of this chapter. The above parts will be discussed below. However, we first 

start by discussing an example that will be used throughout the chapter. 

2.4 Running example 

As an example, in this chapter we take the research of Diesfeldt (1997). It examines a 

Dutch questionnaire that is intended to measure depression in the elderly in 

psychogeriatric centers. Of course there are more questionnaires to measure 

depression, such as the BDI (Beck's Depression Inventory). Why this list? Diesfeldt 

motivates this as follows: 

When using self-assessment scales, researchers should keep in mind that the 

limitations of language comprehension, insight and memory impede reliable 
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interpretation of the questionnaire.14,15 However, none of the questionnaires is 

designed specifically for use in elderly people with dementia. On further 

inspection, the questionnaires appear to contain complex sentences that place 

high demands on concentration and understanding. Some questions refer 

directly to cognitive symptoms that already occur in dementia, but do not in 

themselves have to lead to mood changes. 

(...) 

An already existing but little known method meets some of the above-

mentioned drawbacks. It is the Depression List of the psychiatrist L.A. Cahn, 

which has been specially formulated for use in people with dementia. The 

terms used are simple and understandable. References to cognitive symptoms 

are avoided. (Diesfeldt, 1997, pp. 113-114; translated) 

Diesfeldt therefore focuses in the article on a psychometric examination of the 

Depression List. In the Method section it is described as follows by Diesfeldt: 

The Depression List consists of 15 keywords that are shown one by one on 

separate charts (see Appendix 1).20 The keywords are derived in part from the 

DSM-III criteria for the clinical diagnosis 'depression'.21 They have been 

chosen to to gauge feelings of respondents about themselves, their environment 

and their future. The researcher supports the keyword with a simple question 

(for example: 'Do you feel satisfied?'), waits for the answer and then classifies 

it on a scoring form under one of the three pre-printed answer alternatives. The 

scores per item vary from 0 to 2, the sum score over the 15 items varies 

between 0 and 30. (Diesfeldt, 1997, p.114; translated) 

Diesfeldt then discusses a study that suggests that the items have a high value of kappa. 

This means that in cases where two observers were present, they usually agreed on the 

scoring. In observation scales it is customary to examine this first, because an item 

with a low inter-rater reliability is in any case not suitable for a measuring instrument 

and therefore does not need to be investigated further. However, in the current chapter 

this analysis is not a learning objective and that is why we will not discuss it anymore. 

The Diesfeldt research sample consisted of 197 people (that is rather small for a 

factor analysis), which were examined in the day center of a psycho-geriatric nursing 

home. The Depression List was thus administered to each of those persons. In addition, 

other measuring instruments were used, but these are not important in this chapter. 

A part of Diesfeldt's psychometric research consisted of a factor analysis on the 

items. That will be discussed in this chapter. The question is: Are these items suitable 

for measuring depression? 

Data 

Because the items must be analysed in psychometric research, it is important that the 

data are collected at item level. It is therefore not enough to store only the sum score of 
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each person. The scores of each person on each item must be kept. The data matrix 

therefore looks schematically as Table 2.1. 

Reading question. Why is Diesfeldt investigating the Depression List? What is 

the question of this research? 

Table 2.1 

Person v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 

A 1 1 1 1 1 2 2 0 2 1 2 2 1 1 0 

B 2 1 0 2 2 2 1 0 1 1 1 1 1 1 2 

C 0 0 1 0 0 2 2 1 1 1 1 0 0 0 1 

D 1 2 2 1 0 0 1 0 2 2 2 0 2 1 2 

… … … … … … … … … … … … … … … … 

 

These variables include the keywords that are shown in table 2.2. The symbol (-) 

behind a keyword means that this item is mirrored. A high score is then awarded to a 

negative answer. 

 

Tabel 2.2 

Variable Original keyword Translation 

v1 Tevreden (-) Satisfied (-) 

v2 Slapen (-) Sleeping (-) 

v3 Eten (-) Eating (-) 

v4 Gezond (-) Healthy (-) 

v5 Moe Tired  

v6 Oud Old  

v7 Eenzaam Lonely  

v8 Vrienden (-) Friends (-) 

v9 Bezoek (-) Visitors (-) 

v10 Somber Gloomy  

v11 Verveling Boredom 

v12 Opgewekt (-) Excited (-) 

v13 Hulpeloos Helpless  

v14 Zwak Weak  

v15 Toekomst (-) Future (-) 

2.5 Design  

In the design section you specify the manifest variables of the research question. A 

manifest variable is an observable variable. When analysing test items, each column 

with scores of a test item is a manifest variable.  
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Explanation  

We use factor analysis to explain the correlations between a large number of manifest 

variables using a small number of common factors. The manifest variables can be 

viewed here as dependent variables and the factors as independent variables. 

Characteristic of a factor analysis is, however, that the independent variables are 

latent. That is, they are not observed and often not even observable. Therefore, we will 

specify the factors in the hypotheses.  

Example  

The manifest variables are the items of the questionnaire. The design is therefore:  

Manifest variables: the 15 items from the Depression List. 

In a factor analysis there are usually a lot of manifest variables, so it is not very 

inspiring to write the names of them completely. Nevertheless, the description must be 

unambiguous.  

Note that we have silently changed the meaning of the word ‘item’. Originally we 

meant by an item a part of the test (in the running example, a keyword). From now on, 

the corresponding columns of the data matrix will also be called items. For example, 

column v1 of Table 2.1 may also be referred to as the item Satisfied.   

2.6 Degree of control  

This is almost always passively observed.  

Explanation  

A factor analysis is generally done with manifest variables that have been passively 

observed. The 'independent' variables are latent in a factor analysis, and it is difficult to 

see how you could manipulate them if you do not even know how to observe them.  

2.7 Aggregated data  

The aggregated data consist of the correlation matrix of manifest variables. If the 

items are ordered response categories, it is best to use polychoric correlations. The 

report must state what type of correlation has been used.  

Explanation  

1               Why are these the aggregated data?  

Factor analysis aims to explain the correlations between the manifest variables. These 

therefore form the input on which the rest of the analysis is based. Sometimes a factor 

analysis is done on the covariance matrix, and then the covariance matrix forms the 

aggregated data. By default, however, the correlation matrix is used. Otherwise, the 

results will depend on the measurement units of the manifest variables.  
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2               Report the correlation matrix!  

The correlation matrix is, unfortunately, often omitted in articles because it requires so 

much space. That is a bad practice. In factor analysis, subjective assessments play a 

relatively important role, and other researchers should be enabled to interpret the data 

differently (Henson & Roberts, 2006). This is possible only if the correlation matrix is 

reported. Especially now that many journals offer the possibility to add material to 

articles online, there is no excuse to omit the correlation matrix.  

 

3               Why tetrachoric or polychoric correlations?  

If the manifest variables are items of a questionnaire, they are usually not continuous, 

but discrete, ordered categories, such as ratings (e.g., 1-2-3-4). Such items are called 

polytomous (or sometimes polychotomous but see Weiss, 1995). Items with two 

response categories (for example, right / wrong) will be referred to as dichotomous. 

Pearson, who along with Galton invented the correlation coefficient, realized that the 

simple correlation coefficient sometimes gives a distorted picture of the relationship 

between two dichotomous variables, and developed an alternative that came to be 

known under the name tetrachoric correlation (Pearson, 1900). The generalization of 

this to polytomous items is called the polychoric correlation (Olsson, 1979 Digby, 

1983; Drasgow, 1988; Hutchinson, 1993). In order to distinguish the correlations, the 

ordinary correlations are referred to as the ‘Pearson product-moment correlation'. Note 

that the addition of the name Pearson contributes little to the clarification of the type of 

correlation, because the Pearson product-moment correlation was probably first 

conceived by Galton, while the tetrachoric correlation was first conceived by Pearson.  

              In the 1940s researchers started to realize that there was a problem with 

conducting factor analysis on the product moment correlation of dichotomous items. In 

his Presidential Address to the Psychometric Society Carroll (1961) noted that it could 

be better to utilize tetrachoric correlations. The reason why items with ordered 

categories are better summarised with polychoric or tetrachoric correlations is that with 

an ordinary factor analysis on product moment correlations it is assumed that the 

variables are normally distributed and linearly related. These assumptions cannot be 

fulfilled with ordered categories, and a common factor analysis on product moment 

correlations can lead to artificial factors (McDonald & Ahlawat, 1974; Bernstein & 

Teng, 1989; Waller, Tellegen, McDonald & Lykken, 1996).  

              For a long time the prevailing opinion was therefore that with polytomous 

items it is better not to use the usual correlations, but rather the polychoric 

correlations (Carroll, 1961; Christoffersson, 1975 Muthén, 1978, 1984; Knol & 

Berger, 1991; Wirth & Edwards, 2007), although this does not always lead to different 

results (Parry & McArdle, 1991) and a disadvantage is that a larger sample is needed 

(Finch & West, 1997). Nevertheless, this recommendation was widely ignored for 

decades (e.g., Forrest, Lewis & Shevlin, 2000), probably because polychoric 

correlations are not implemented in SPSS. However, there are several other programs 
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in which they can be calculated (including LISREL, Mplus). Another solution to this 

problem is Item Response Theory (these chapters were not translated).  

Example  

Diesfeldt fortunately reports the correlation matrix. This allows us to replicate his 

analysis and perform alternative analyses. If in the following we sometimes come to a 

different conclusion than Diesfeldt, then one should remember that this is only possible 

because Diesfeldt neatly reported the correlation matrix.  

              The correlations reported by Diesfeldt are shown in Table 2.3.  

 Table 2.3  

  v1  v2  v3  v4  v5  v6  v7  v8  v9  v10  v11  v12  v13  v14  v15  

v1  1.0  .31  .24  .40  .22  .23  .37  .17  .20  .38  .27  .50  .24  .26  .42  

v2  .31  1.0  .18  .22  .31  .27  .13  .06  .08  .09  .25  .17  .03  .13  .17  

v3  .24  .18  1.0  .04  .03  .17  .32  .25  .19  .18  .09  .17  .07  -.12  .17  

v4  .40  .22  .04  1.0  .30  .34  .26  .11  .24  .34  .19  .30  .29  .52  .32  

v5  .22  .31  .03  .30  1.0  .26  .16  .03  .06  .24  .11  .22  .20  .36  .24  

v6  .23  .27  .17  .34  .26  1.0  .22  .07  .13  .34  .18  .39  .19  .29  .37  

v7  .37  .13  .32  .26  .16  .22  1.0  .21  .52  .42  .26  .38  .23  .14  .30  

v8  .17  .06  .25  .11  .03  .07  .21  1.0  .33  .29  .20  .22  .10  .06  .11  

v9  .20  .08  .19  .24  .06  .13  .52  .33  1.0  .41  .29  .32  .14  .23  .19  

v10  .38  .09  .18  .34  .24  .34  .42  .29  .41  1.0  .28  .52  .38  .37  .41  

v11  .27  .25  .09  .19  .11  .18  .26  .20  .29  .28  1.0  .38  .19  .06  .35  

v12  .50  .17  .17  .30  .22  .39  .38  .22  .32  .52  .38  1.0  .32  .31  .52  

v13  .24  .03  .07  .29  .20  .19  .23  .10  .14  .38  .19  .32  1.0  .22  .22  

v14  .26  .13  -.12  .52  .36  .29  .14  .06  .23  .37  .06  .31  .22  1.0  .20  

v15  .42  .17  .17  .32  .24  .37  .30  .11  .19  .41  .35  .52  .22  .20  1.0  

  

Diesfeldt reports them in a different order, which is based on the results of the factor 

analysis. I did not copy this, just to show you that without factor analysis, it’s hard 

recognise any pattern in it. Do you agree? Let us now look ahead to these correlations 

if the variables are sorted on the basis of the factor analysis. Furthermore, the display 
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may be somewhat simplified by using the following principles, which have nothing to 

do with factor analysis:  

- It is sufficient to display only the triangle at the lower left or top right of the 

correlation matrix because the correlation matrix is symmetric.  

- The diagonal can be left blank because everyone knows that these correlations 

are exactly equal to 1.  

- The 0. in each number may be omitted because everyone knows that 

correlations must be between -1 and +1.  

The correlation matrix reported by Diesfeldt, is shown in Table 2.4. The order of the 

variables here is based on the factor analysis, and so is the use of bold font. The 

shading is added by me, also based on the factor analysis.  

Table 2.4  

  v1  v6  v10  v11  v12  v13  v15  v4  v5  v14  v3  v7  v8  v9  v2  

v1    23  38  27  50  24  42  40  22  26  24  37  17  20  31  

v6      34  18  39  19  37  34  26  29  17  22  7  13  27  

v10        28  52  38  41  34  24  37  18  42  29  41  9  

v11          38  19  35  19  11  6  9  26  20  29  25  

v12            32  52  30  22  31  17  38  22  32  17  

v13              22  29  20  22  7  23  10  14  3  

v15                32  24  20  17  30  11  19  17  

v4                  30  52  4  26  11  24  22  

v5                    36  3  16  3  6  31  

v14                      -12  14  6  23  13  

v3                        32  25  19  18  

v7                          21  52  13  

v8                            33  6  

v9                              8  

v2                                

  

The pattern that you should recognise here, is that there are three groups of variables. 

The variables of the same group are always next to each other. The correlations within 
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a group are in bold text, and those cells are also shaded. A different shade has been 

used for each group. Within a group of variables, the correlations are generally higher 

than between different groups. 

Consequently, factor analysis can be considered as a glorified way of grouping 

variables based on their correlations. But what does that mean? Well, the idea is that 

the variables within such a group apparently have more in common than variables of 

different groups. In factor analysis it is assumed that this happens because such 

variables partially have a common cause. This cause is known as a common factor. In 

this example, Diesfeldt called the factor of the first group Spirited, the second factor 

Health, and the third factor Social contacts. Those are just names. If you look at the 

keywords of the items, you will see that they are pretty good names, which describe 

what kind of items fall into the relevant group.  

The common factors are not measured themselves; only their manifestations are 

measured. These manifestations are the items. The factors explain why some items 

correlate more with each other than other items.  

Reading Question. How can you see that items probably belong to the same factor?  

2.8 Hypotheses  

In the hypotheses section, first indicate whether the factor analysis is exploratory or 

confirmatory. In an exploratory factor analysis (EFA) you have no hypothesis about 

the amount and nature of the factors. In that case, you use factor analysis to gain 

insight into the data, which may then lead to a theory. In a confirmatory factor analysis 

(CFA) you have a hypothesis about the amount and nature of the factors. That 

hypothesis is based on a substantive theory. A third possibility, which is rarely 

important in psychology is that factor analysis is used for data reduction. In that case 

there is no hypothesis and no hypothesis is formed. The only goal is to reduce the 

number of variables with as little loss of information as possible.  

In a confirmatory factor analysis, proceed by specifying how many common 

factors are assumed. If more than one common factor is assumed, you should also 

indicate whether a simple structure is expected. A simple structure means that each 

manifest variable belongs to exactly one common factor. If possible, specify which 

manifest variables belong to which factors. Furthermore, state whether you expect 

that the common factors are uncorrelated.  

Although you do not have to write this in the hypotheses, it can be helpful in a 

confirmatory factor analysis to state whether the alternative hypothesis is fixed-

domain or fixed-model. In a fixed-domain analysis, rejection of the null hypothesis 

will lead to a change of the model, while the domain (the collection of variables that is 

investigated) remains the same. The model will then be changed by, for example, 

assuming more factors or by assuming that some variables (also) belong to a different 

factor. In a fixed-model analysis, rejection of the null hypothesis leads to a change of 
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the domain, while the model remains the same. The variables that are responsible for 

the violation of the model are then removed from the analysis. 

 In the investigation of unidimensionality of items that one wants to include in a 

scale (test), one has to use a confirmatory factor analysis with one factor per subscale 

and a fixed model. If this hypothesis is rejected, and if one proceeds by seeking a better 

division into subscales, these subsequent analyses should be considered explorative. 

Names of factors will be displayed from now on in italics. In both latent and 

manifest variables, the name will begin with a capital letter to distinguish them from 

the same non-technical concept. This is a deliberate departure from the APA 

guidelines.  

Explanation  

1               Explorative versus confirmatory  

In the literature, often a distinction is made between exploratory and confirmatory 

factor analysis. In exploratory factor analysis, you actually have no theory. You just 

have a lot of manifest variables of which you don’t understand very much, and you 

hope that the factor analysis will create structure in this chaos. You do not know how 

many factors there will be, and you do not know what kind of factors can be expected 

and which manifest variables will group together. With confirmatory factor analysis, 

on the other hand, you have a hypothesis about all these points. For example, you 

would have the hypothesis that the items contain the factors Emotion, Social and 

Physical, and moreover you know in advance which item belongs to which factor.  

2               Deviant meaning of confirmatory  

In the literature, the term 'confirmatory factor analysis usually used in a narrower sense 

than in this book. In this stricter sense it concerns factor analyses in which a single 

statistical test is obtained for a hypothesis that describes how many factors there are 

and which manifest variables belong to which factors. Such analyses can normally not 

be done with SPSS, but only with specialized structural equation modeling (SEM) 

programs like LISREL. The exception to this is that, if the hypothesis contends that 

there is only a single factor,  then SPSS can be used to do a confirmatory factor 

analysis in the strict sense of the term.  

In this book we have chosen to use the term ‘confirmatory’ in a broader sense, 

indicating that there is a hypothesis that specifies which variables belong to which 

factor, even if a program is ultimately used that only partially tests this hypothesis. 

Please be aware that this usage of the word deviates from the usage elsewhere in the 

factor analytic literature – but it agrees with the usage in other methodological 

literature. This will be defended in Section 2.18.3.  



22 Factor analysis and item analysis 

 

3               Correlated versus uncorrelated factors  

It used to be common practice to assume that factors are uncorrelated, mainly because 

of the mathematical simplicity that this assumption entails. Nowadays there is almost 

consensus that in both explorative and confirmatory factor analysis it is better not to 

assume in advance that the factors are uncorrelated. If the factors are correlated, it will 

automatically emerge during the analysis. Only if the goal is just data reduction, it may 

make more sense to define factors that are uncorrelated.  

4               Fixed-domain versus fixed-model  

The terms fixed-domain and fixed-model are not common in the literature. I use them 

to describe two different goals of factor analysis, not explicitly recognised in the 

literature, but nonetheless important. It is not a mandatory part of an basic report; it is 

only recommended.  

In general you have to assume a fixed domain. You have a number of variables of 

which you want to explain the correlations, and if that does not work then you cannot 

simply throw away the disruptive part of the data and then pretend that you have 

succeeded. For example, Spearman (1904a, 1927), the psychologist who developed the 

first factor analysis, found that all cognitive tasks are highly correlated with each other. 

He explained this by assuming that all these cognitive tasks rely on the same common 

factor, which he called ‘general intelligence’. If, after a while, it turns out that 

mathematics and philosophy have a negative correlation, then he cannot get rid of this 

by ignoring mathematics and philosophy. His theory was about all cognitive tasks, and 

it is clear that mathematics and philosophy belong to this domain too.  

The important exception to this is a psychometric analysis of test items. In a test, 

the item scores of a person are eventually summarised in one test score, and that is only 

useful if the items are governed by one factor. If an item does not meet this, it should 

be removed from the test, and then it does not need to conform to the model anymore. 

In other words, the model is not descriptive but prescriptive here. In practice, one is 

often not sure which items belong to a test, and factor analysis is then used to provide a 

definitive answer. For example, suppose that the test is meant to measure depression. 

Nobody knows with certainty what depression is and what the symptoms are. When a 

given item does not fit well with the other items according to the factor analysis, then 

that is a reason to believe that this item might not be such a good indication of 

depression. There can be many reasons for this. One reason may be that the persons 

have misunderstood the question.  

Examples  

1               According to the above rules one should use a confirmatory factor analysis 

with one factor for the Depression List, with a fixed model. You could represent this 

hypothesis with Figure 2.1.  
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Figure 2.1  

The left side of the figure indicates that all of the items (manifest variables: rectangles) 

depend on a common factor (latent variable: oval), which is referred to as Depressivity. 

The right side indicates that any overt variable additionally depends on a unique factor 

(latent variable), which is specific to that item. These may be noise and include 

measurement errors and are the reason that the item correlations are less than 1. These 

unique factors have not been defined in more detail.  

  

2               In reality Diesfeldt did an exploratory factor analysis. The results suggested 

that there were several factors. This does not exclude the possibility that a model with 

one factor may also fit with the data. As a result, after this exploratory analysis it is not 
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clear to what extent it is possible to summarise the Depression List with a single score 

per person. Only the above discussed confirmatory analysis provides an answer to this.  

The fact that Diesfeldt did something else than prescribed above does not mean that 

his research is wrong. I just think it would have been better to first show with a 

confirmatory factor analysis that a one-factor model does not match the data, and then 

proceed with an exploratory factor analysis to determine how many factors are needed. 

But this  is nowadays much easier than it was in 1997. Later, Diesfeldt (2004) carried 

out a follow-up study in which confirmatory analyses were conducted on the basis of 

the results of the 1997 exploratory analysis.  

  

3               The BPS (Van Loveren-Huyben, van der Bom & Bronts, 1988) is another 

tool for the elderly, based on observation of behavior by caregivers. There are 33 items, 

which are divided into three scales: Cognition, Mood and Contacts. In the scoring, one 

does not take the sum over all 33 items, but each person gets three sumscores, for 

Cognition, Mood, and Contacts, respectively. These scales are based on an exploratory 

factor analysis at the time of construction. In later years, it has been examined several 

times whether this structure of three scales is still adequate. The hypotheses are then as 

follows:  

  

Confirmatory factor analysis  

Three factors: Cognition, Mood and Contacts  

Simple structure expected  

The items belong to the following factors (see Table 2.5).  

Table 2.5  

Item  Cognition  Mood  Contacts 

Cognition item 1  X      

Cognition item 2  X      

Cognition item 3  X      

...  ...      

Mood item 1    X    

Mood item 2    X    

Mood item 3    X    

...    ...    

Contacts item 1      X  

Contacts item 2      X  

Contacts item 3      X  

...      ...  

 

The factors can be correlated.  

The alternative hypothesis is fixed-model.  



Chapter 2 – Conducting and reporting factor analysis 25 

 

Reading Question. What is the hypothesis when factor analysis is used to analyse items 

of a test? What should you do if the hypothesis is not correct?  

2.9 Analysis method  

In the analysis method section, specify the extraction method and the rotation 

method. The extraction method determines how the factor pattern is sought initially. 

The most relevant options are principale components analysis (PCA) (Kelley, 1928; 

Hotelling, 1933, 1936) and maximum likelihood (ML) (Lawley, 1940; Jöreskog, 

1967, 1969; Jöreskog & Lawley, 1968 Jöreskog & Sörbom, 1996, 1999, 2006). In 

psychology ML is almost always the better choice, or sometimes principal axis factor 

(PAF) (not to be confused with PCA) if there are deviations from the normal 

distribution (Finch & West, 1997; Fabrigar, Wegener & MacCallum Strahan, 1999. 

Reise, Waller & Comrey., 2000; Stewart et al, 2001; Costello & Osborne, 2005).  

As noted in the section on aggregated data, factor analysis may be based on 

polychoric correlations. In that case, an asymptotic distribution free (ADF) method is 

recommended (Browne, 1974, 1984; Muthén, 1978, 1984; Jöreskog, 1990, 1994; Finch 

& West, 1997; Flora & Curran, 2004; Wirth & Edwards, 2007). These are not yet 

available in SPSS. Within SPSS, unweighted least squares (ULS) can be used in this 

case (ULS). This method will not yield a p-value, but it is to be expected that it leads to 

a good solution. The value of this method is underestimated (Jöreskog, 2003).  

The rotation method determines how the initially extracted factor pattern is 

converted into a factor pattern with a simple structure (Thurstone, 1947, 1954). The 

most relevant choices are Varimax (Kaiser, 1958) and Promax (Hendrickson & White, 

1964). Varimax is used if factors are assumed to be uncorrelated. This is called an 

orthogonal rotation. Promax can be used if the factors may be correlated. This is 

called an oblique rotation.  

Explanation  

1               The difference between extraction and rotation  

The main output of factor analysis is the factor pattern. This is a table that describes 

how the manifest variables depend on factors (the exact meaning of a factor pattern 

will be explained in the next section, hence you may want to read the present section 

again after reading the next section). In an exploratory factor analysis, the pattern 

factor is searched in two phases (Mulaik, 1972). The first stage is the extraction. 

Herein, one searches a factor pattern that explains the correlation matrix as good as 

possible, assuming uncorrelated common factors. The factors come in the order of their 

importance: the most important factor, which explains the majority of the correlations, 

is found first. The second phase is the rotation. Here, the found factor pattern is 

converted into a factor pattern that explains the correlations equally well, but that 
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complies as much as possible to simple structure (Thurstone, 1954). In addition, these 

factors may be correlated.  

In a confirmatory factor analysis, this division in phases is not used. A factor 

pattern is estimated that explains the correlations as good as possible and that moreover 

meets the specifications of the hypothesis (Jöreskog, 1969). In SPSS, it is not possible 

to do a confirmatory factor analysis in that way, unless the hypothesis is that there is 

one factor.  

2 Extraction: PCA vs. ML  

As mentioned earlier, especially PCA and ML are important in psychology. The reason 

for not recommending PCA is that PCA can be viewed as a special case of factor 

analysis in which the manifest variables do not contain unique factors. This implies 

that the variables would all have perfect reliability (Mulaik, 1965). This is an 

unrealistic assumption, which leads to a distortion of the outcomes if it has been 

violated. See Fabrigar, Wegener, MacCallum and Strahan (1999) for a more detailed 

discussion.  

The other extraction methods are mostly of historical interest, or theoretically, and 

usually produce results that are very similar to the ML method. Only if there are 

deviations from a normal distribution they might be better.  

Although I generally discourage PCA, it is for several reasons still important to 

discuss PCA in this book. The first reason is banal and teaches hopefully something 

about psychologists: an important reason why PCA is used so often, is that it is the 

default in SPSS (Reise, Waller & Comrey, 2000; Costello & Osborne, 2005) (a default 

is an option that the program chooses if you don’t specify which option you want). 

Since many users of factor analysis have no idea what they are doing, they let it go, in 

the naive hope that the creators of SPSS picked the best option as the default. The 

makers of SPSS picked not the best but the simplest option as the default. PCA is a 

commonly used method, but that says nothing about its suitability. Borsboom (2006) 

writes about this:  

The reason that, say, Cronbach's alpha and principal components analysis are 

so popular in psychology is not that these techniques are appropriate to answer 

psychological research questions, or that they represent an optimal way to 

conduct analyses of measurement instruments. The reason for their popularity 

is that they are default options in certain mouse-click sequences of certain 

popular statistics programs. (Borsboom, 2006, p. 433)  

The second reason is that PCA is by far the simplest form of the factor analysis, and 

the only one in which the factor scores can be calculated exactly from the manifest 

variables. There is therefore no need to rely on latent variables. Some authors therefore 

believe that PCA should not be called factor analysis. That no latent variables are 

involved, is seen as an advantage by some sort of rigorous empiricists who I do not 

understand. You cannot see the back of the moon either; do they not believe in it? 
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Nevertheless, this reason for choosing PCA is more rational than the fact that it is the 

default.  

The third reason is that PCA is the best choice if one requires only a reduction of 

the number of variables without theoretical context (Fabrigar, Wegener & MacCallum 

Strahan, 1999).  

3               Rotation: Varimax versus Promax  

In both Varimax and Promax a factor pattern is searched that approximates simple 

structure as close as possible. In Varimax it is ensured that the factors remain 

uncorrelated, in Promax not. Varimax rotation is mainly used for exploratory factor 

analysis. The other rotation methods are very similar to either Varimax or Promax and 

usually give comparable results.  

The statement that Varimax is often used for exploratory factor analysis, is an 

observation, and not an instruction to imitate it. In my opinion an oblique rotation is 

generally better, because it will more often discover a simple structure. That is not just 

my opinion; it was also the opinion of Thurstone (Abdi, 2003) and Cattell (1971, pp. 

16-20). Also, recent authors call predominantly for oblique rotation (Fabrigar, Wegener 

& MacCallum Strahan, 1999. Reise, Waller & Comrey, 2000; Stewart et al., 2001; 

Costello & Osborne, 2005). Despite the fact that it has been advised for half a century, 

this recommendation is widely ignored.  

The interpretation of the factor pattern is often easier with oblique rotation. In terms 

of content, there is usually little reason why the factors should be uncorrelated. For 

example, why should fluid and crystallized intelligence be uncorrelated?  

A problem for orthogonal rotation is also that one often wishes that the model 

applies not only in the entire population, but also in various subpopulations (e.g., men 

and women). This principle is called factorial invariance (Millsap, 1997, 2007a) or 

subpopulation invariance (Ellis, 1993; Ellis & Junker, 1997). In general, if two 

variables are uncorrelated, they can very well be correlated in subpopulations. That 

also applies to the factors. Therefore, there is little reason to believe that there is a 

model with orthogonal factors that also holds in subpopulations. The problem is even 

greater because some subpopulations may be overrepresented in the sample, and that 

could lead to the assumption of orthogonal factors being violated. For this reason, 

oblique rotation should be preferred.  

Instead of Promax one can also use Oblimin. The literature is neutral as regards the 

choice of Promax and Oblimin. In this book, Promax is used most of the time.  

4               Running in SPSS with raw data as input  

If the data file contains the raw data (not the correlation matrix!), you can control the 

factor analysis from the menu: 

              Analyze > Dimension Reduction > Factor ...  

              Put the manifest variables under Variables  
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              Click the Extraction... button  

              Select the extraction Method: Principal components or Maximum likelihood   

o choose Fixed number of factors, in a confirmatory analysis; also 

indicate the number of factors  

o ‘Based on Eigenvalue, Eigenvalues greater than: 1’ is often chosen in 

an exploratory analysis, but is not recommended  

              Continue  

              Click the Rotation ... button  

              Choose the rotation Method: Varimax or Promax  

              At Display, tick the Rotated solution and possibly Loading plot (s).  

              Continue  

              Click the Options ... button  

o Choose ‘Sorted by size’ under Coefficient Display Format  

                       Continue, OK  

It is often convenient to select at Options under Coefficient Display Format 'Suppress 

small values, Absolute value below:', and to specify the value .30, or .50. This means 

that loadings of less than 0.30 or 0.50 will not be displayed, which often makes the 

pattern more clear. For the final report in an article all factor loadings have to be 

displayed (Henson & Roberts, 2006).  

5               Running in SPSS with correlation matrix as input  

If the data file contains the correlation matrix, you can control the factor analysis not 

from the menu but you have to use syntax: 

 

              Perform the above steps except the last one (OK).  

              Click Paste instead of OK.  

              It opens a new window with the so-called syntax.  

 

For example, the content of the syntax window looks like this:  

 

        FACTOR  

/ VARIABLES v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 

/ MISSING LISTWISE  

/ ANALYSIS v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15                             

/ PRINT INITIAL EXTRACTION ROTATION  

/ CRITERIA MINEIGEN (1) ITERATE (25)  

/ EXTRACTION PC  

/ CRITERIA ITERATE (25)  

/ ROTATION VARIMAX  

 / METHOD = CORRELATION .  
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A brief explanation of this: The command is FACTOR and after each / is a 

subcommand. A sub-command is, for example, / EXTRACTION, and a keyword in 

this subcommand is PC. The point behind CORRELATION is the closing command 

and although it seems unimportant, it can go wrong if you omit it – but you'll find out.  

 

Remove the sub-commands VARIABLES, MISSING and ANALYSIS.  

Add on that place the subcommand / MATRIX = IN (COR = *)  

 

The above syntax then becomes:  

 

        FACTOR  

/ MATRIX = IN (COR = *)  

/ PRINT INITIAL EXTRACTION ROTATION  

/ CRITERIA MINEIGEN (1) ITERATE (25)  

/ EXTRACTION PC  

/ CRITERIA ITERATE (25)  

/ ROTATION VARIMAX  

/ METHOD = CORRELATION .  

 

Now you can execute this syntax:  

              Put the cursor in the command.  

              Click the play-button (or choose Run > Current).  

Examples  

1 In the running example (Diesfeldt’s data of the Depression List) we choose ML 

extraction. Only one factor is hypothesised, therefore no rotation is possible.  

 

2 However Diesfeldt actually conducted a PCA extraction with Varimax rotation. In an 

exploratory factor analysis this is not unusual. Still, my preference in an exploratory 

analysis would be to use ML extraction with promax rotation. The reason why I prefer 

ML extraction is that PCA assumes that there are no unique factors. 

  

3 In the above example of the BPS, we have a quite specific hypotheses about the 

factor pattern. In principle we would therefore like to conduct a confirmatory factor 

analysis. Because we limit ourselves to SPSS, we cannot really conduct a confirmatory 

factor analysis with multiple factors, but we will try to approach it as closely as 

possible. We therefore choose ML extraction with Promax rotation.  
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Reading Question. Which extraction method and which rotation method 

would you use in an item analysis of a test?  

2.10 Estimates               

The main estimates are the factor loadings, which are put together in a table called the 

factor pattern. In addition, one reports the communalities, the eigenvalues and the 

correlations between the factors.  

In an analysis of the correlation matrix (not the covariance matrix), the loading of a 

manifest variable on a factor is equal to the regression weight of that manifest variable 

on that factor. We will assume henceforth that each factor is standardised. If there is 

only one factor or if factors are uncorrelated, then the factor loading is equal to the 

correlation between the manifest variable and the factor. 

The communality of a manifest variable is equal to the squared correlation multiple 

of that variable on the common factors. This indicates the percentage of the variance of 

the manifest variable that is explained by the common factors. If the factors are 

uncorrelated, this is equal to the sum of the squared loadings of the manifest 

variable.  

The eigenvalue of an unrotated factor equals the sum of the squared loadings on 

that factor. For rotated but uncorrelated factors such sums of squares can be 

computed, and are then sometimes called eigenvalue, but that term is not correct in this 

case. Nevertheless, the computed quantity indicates how much variance the factor 

explains in the manifest variables. The maximum value is equal to the number of 

variables. The sum of squares divided by the number of variables is interpreted as the 

percentage variance that the factor explains in the manifest variables.  

 In SPSS, factor loadings must be looked up after rotation in the table Rotated 

Component Matrix or Rotated Factor Matrix or Pattern Matrix. Do not confuse this 

with the Factor Matrix and the Structure Matrix, which look very similar but have 

different meanings. If no rotation was performed, factor loadings are given in the 

Factor Matrix or the Component Matrix. The other tables are not  displayed. 

In SPSS, communalities should be looked up in the Extraction column, not in the 

Initial column. For the eigenvalues, it is the other way around: these are given in the 

Initial column. The sums of squared loadings may be important too, and these are 

displayed in the Rotation column. 

Explanation  

Historically,  many types of factor analysis start the computational process by 

estimating the communalities and / or the eigenvalues (Mulaik, 1972). Therefore, these 

coefficients always get much attention in texts on factor analysis. However, for 

substantive interpretation they are much less important than the factor pattern.  
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Example 1  

In this example, a confirmatory factor analysis was done on the correlations of 

Diesfeldt, with one factor and ML extraction. The factor pattern, communalities, the 

eigenvalues and factor correlations are found in the output. In this case they are 

(including most SPSS-output) shown in Table 2.6 to 2.9. 

 

      FACTOR  

/ MATRIX = IN (COR = *)  

/ PRINT INITIAL EXTRACTION  

/ CRITERIA FACTORS (1) ITERATE (25)  

/ ML EXTRACTION  

/ ROTATION NORO TATE  

/ METHOD = CORRELATION .  

 

Table 2.6 

  

Communalities 

 

 

  Initial Extraction 

 

 

V1  Satisfied (-) 0.415 0.387 

 

 

V2  Sleeping (-) 0.248 0.094 

 

 

V3  Eating (-) 0.229 0.074 

 

 

V4  Healthy (-) 0.406 0.296 

 

 

V5  Tired 0.244 0.141 

 

 

V6  Old 0.298 0.248 

 

 

V7  Lonely 0.412 0.316 

 

 

V8  Friends (-) 0.185 0.096 

 

 

V9  Visitors (-) 0.397 0.228 

 

 

V10  Gloomy 0.464 0.487 

 

 

V11  Boredom 0.265 0.205 

 

 

V12  Excited (-) 0.498 0.532 

 

 

V13  Helpless 0.207 0.184 

 

 

V14  Weak 0.417 0.209 

 

 

V15  Future (-) 0.383 0.377 

 

 

Extraction Method: Maximum Likelihood. 
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Table 2.7 

 

Total Variance Explained 

      

Factor 
Initial Eigenvalues Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 4.555 30.369 30.369 3.874 25.829 25.829 

2 1.603 10.684 41.053       

3 1.237 8.245 49.299       

4 1.018 6.790 56.088       

5 0.914 6.093 62.181       

6 0.815 5.436 67.617       

7 0.795 5.299 72.916       

8 0.758 5.051 77.968       

9 0.684 4.557 82.525       

10 0.567 3.782 86.306       

11 0.484 3.228 89.535       

12 0.453 3.017 92.552       

13 0.423 2.822 95.374       

14 0.357 2.379 97.753       

15 0.337 2.247 100.000       

       
Table 2.8 

  

Factor Matrix(a) 

 

  

 

 
  

Factor 

 

 

1 

 

 

V1  Satisfied (-) 0.622 

 

 

V2  Sleeping (-) 0.306 

 

 

V3  Eating (-) 0.273 

 

 

V4  Healthy (-) 0.544 

 

 

V5  Tired 0.375 

 

 

V6  Old 0.498 

 

 

V7  Lonely 0.563 

 

 

V8  Friends (-) 0.310 
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V9  Visitors (-) 0.478 

 

 

V10  Gloomy 0.698 

 

 

V11  Boredom 0.453 

 

 

V12  Excited (-) 0.729 

 

 

V13  Helpless 0.429 

 

 

V14  Weak 0.457 

 

 

V15  Future (-) 0.614 

 

 

Extraction Method: Maximum Likelihood. 

 

a  1 factors extracted. 4 iterations 
required. 

Table 2.9 

  

Goodness-of-fit Test 

 

 
 

   

 

Chi-Square df Sig. 

 

 

230.364 90 0.000 

 

      

If we may believe these factor loadings – which we know only after the statistical tests 

of the next section – we can conclude this:  

- The highest loading is the one of v12 (Excited). This item correlates .729 with 

the common factor, the latent variable Depressivity. The communality is the 

square of it, .532. This shows how much variance of Cheerfulness is explained 

by Depressivity: 53.2%.  

- The lowest loading is obtained for v3 (Food). This item correlates .273 with the 

factor Depressivity. The explained variance is .074.  

In Figure 2.1, we may write these loadings next to the arrows from Depressivity to the 

items. The loading then indicates the strength of the corresponding arrow. (You can do 

this yourself. For an example, look at Figure 1 of Church et al. (1999).)  

From the table of eigenvalues we can conclude that the factor Depressivity explains 

25.829% of the variance of all the variables together.  

Note, however, that the word 'Depressivity' does not appear in the output. The factor 

is simply described as 'Factor 1'. The data only indicate that there is a common factor. 

That 'Depressivity' is a good name for it, is something we infer from the contents of the 

items. That also implies a limitation to the answer that we may give to the research 

question. The question was whether the items measure depression. But from factor 

analysis we may at best conclude that the items measure the same construct. Whether 

we shall call this 'Depressivity' or not, does not follow from the data.  



34 Factor analysis and item analysis 

 

Reading Question. What is a factor loading? In which table of the output do you 

find the factor loadings ?  

 

Example 2  

In this example, an exploratory factor analysis on the correlations of Diesfeldt was 

conducted with PCA extraction and Varimax rotation. Moreover, in SPSS the 

command was given to sort the variables on the basis of factor loadings. The output is 

displayed in table 2.10 up to and including 2.13.  

Table 2.10  

  

Communalities 

 

 
 

   

 

  Initial Extraction 

 

 

V1  Satisfied (-) 1.000 0.488 

 

 

V2  Sleeping (-) 1.000 0.713 

 

 

V3  Eating (-) 1.000 0.563 

 

 

V4  Healthy (-) 1.000 0.581 

 

 

V5  Tired 1.000 0.518 

 

 

V6  Old 1.000 0.411 

 

 

V7  Lonely 1.000 0.547 

 

 

V8  Friends (-) 1.000 0.467 

 

 

V9  Visitors (-) 1.000 0.663 

 

 

V10  Gloomy 1.000 0.620 

 

 

V11  Boredom 1.000 0.418 

 

 

V12  Excited (-) 1.000 0.658 

 

 

V13  Helpless 1.000 0.396 

 

 

V14  Weak 1.000 0.744 

 

 

V15  Future (-) 1.000 0.627 

 

 

Extraction Method: Principal Component Analysis. 
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Table 2.11  

 

Total Variance Explained 

           

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings  

Total 
% of 

Variance 
Cumulative 

% 
Total 

% of 
Variance 

Cumulative 
% 

Total 
% of 

Variance 
Cumulative 

%  

1 4.555 30.369 30.369 4.555 30.369 30.369 2.785 18.566 18.566  

2 1.603 10.684 41.053 1.603 10.684 41.053 2.168 14.451 33.017  

3 1.237 8.245 49.299 1.237 8.245 49.299 2.078 13.855 46.871  

4 1.018 6.790 56.088 1.018 6.790 56.088 1.383 9.217 56.088  

5 0.914 6.093 62.181              

6 0.815 5.436 67.617              

7 0.795 5.299 72.916              

8 0.758 5.051 77.968              

9 0.684 4.557 82.525              

10 0.567 3.782 86.306              

11 0.484 3.228 89.535              

12 0.453 3.017 92.552              

13 0.423 2.822 95.374              

14 0.357 2.379 97.753              

15 0.337 2.247 100.000              

Extraction Method: Principal Component 
Analysis. 

      
 

 

Table 2.12  

  

Component 
Matrix(a) 

   
 

  

 

 
  

Component 

 

 

1 2 3 4 

 

 

V12  Excited (-) 0.741 0.048 -0.018 -0.326 

 

 

V10  Gloomy 0.725 0.083 -0.288 -0.069 

 

 

V1  Satisfied (-) 0.661 -0.007 0.209 -0.083 

 

 

V15  Future (-) 0.644 -0.036 0.166 -0.430 

 

 

V7  Lonely 0.615 0.376 -0.084 0.146 

 

 

V4  Healthy (-) 0.612 -0.379 -0.139 0.208 

 

 

V6  Old 0.551 -0.241 0.216 -0.053 

 



36 Factor analysis and item analysis 

 

 

V9  Visitors (-) 0.531 0.417 -0.328 0.314 

 

 

V11  Boredom 0.500 0.207 0.170 -0.309 

 

 

V13  Helpless 0.471 -0.109 -0.297 -0.271 

 

 

V14  Weak 0.509 -0.527 -0.356 0.283 

 

 

V3  Eating (-) 0.317 0.511 0.401 0.202 

 

 

V8  Friends (-) 0.354 0.480 -0.133 0.306 

 

 

V5  Tired 0.440 -0.471 0.172 0.271 

 

 

V2  Sleeping (-) 0.374 -0.173 0.671 0.305 

 

 

Extraction Method: Principal Component Analysis. 

  

 

a  4 components extracted. 

     

Table 2.13  

  
 

Rotated Component Matrix(a) 

  

 

  

 

 
  

Component 

 

 

1 2 3 4 

 

 

V15  Future (-) 0.771 0.116 0.025 0.137 

 

 

V12  Excited (-) 0.750 0.204 0.229 0.029 

 

 

V11  Boredom 0.598 -0.081 0.185 0.140 

 

 

V1  Satisfied (-) 0.548 0.224 0.205 0.308 

 

 

V10  Gloomy 0.531 0.361 0.440 -0.122 

 

 

V13  Helpless 0.483 0.299 0.095 -0.254 

 

 

V6  Old 0.439 0.346 0.003 0.313 

 

 

V14  Weak 0.096 0.849 0.097 -0.067 

 

 

V4  Healthy (-) 0.253 0.693 0.154 0.115 

 

 

V5  Tired 0.119 0.596 -0.045 0.383 

 

 

V9  Visitors (-) 0.138 0.192 0.775 -0.077 

 

 

V8  Friends (-) 0.044 -0.007 0.680 0.050 

 

 

V7  Lonely 0.340 0.115 0.639 0.100 

 

 

V3  Eating (-) 0.153 -0.264 0.490 0.480 

 

 

V2  Sleeping (-) 0.120 0.201 0.013 0.811 

 

 

Extraction Method: Principal Component Analysis.  Rotation Method: 
Varimax with Kaiser Normalization. 

 

a  Rotation converged in 7 iterations. 
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The Rotated Component Matrix contains the rotated factor pattern. Loadings greater 

than 0.4 are marked bold by me. As you can see, the previously discussed pattern 

returns here. A simple structure emerges, with a few exceptions.  

Reading Question. What are the exceptions?  

2.11 Plot of factor loadings               

In a factor analysis with two orthogonal factors it may be helpful to plot the loadings. 

In such a plot, each factor is shown as an axis, and each variable as a point. The factor 

loadings of the variable are the coordinates of the point. If the factor model is correct, 

the correlations between the variables can be inferred from the plot. Variables that are 

close to each other, away from the origin, correlate strongly positive. Variables that are 

opposite to each other, far away from the origin, correlate strongly negative. Variables 

that, viewed from the origin, are perpendicular with each other, have correlation zero 

with each other. Variables that are close to the origin, have correlations close to zero 

with all other variables.  

 

Explanation  

If there is only one factor, one can make a plot of the loadings, but this plot will have 

only one axis. SPSS clearly feels too good for this and refuses to make it. If there are 

more than two factors, the plot cannot be properly drawn on paper, since such drawings 

can only be two-dimensional. SPSS can plot a projection of the first three factors, 

which you can rotate interactively, but I've never seen a case in which this was useful.  

In an oblique rotation the correlations cannot be inferred from the plot. The plot is 

less meaningful in this case.  

The correlations that one infers from the plot are predicted by the model. These are 

called the reproduced correlations (see next section). They may differ from the 

observed correlations that are calculated directly from the data.  

How correlations can be inferred from the plot is discussed in the section on 

visualisation at the end of this chapter. 

Example  

In an analysis that focuses on data reduction, I sometimes use the following method to 

get an overview of the correlations: A PCA with two factors and varimax rotation. In 

addition, I let the factor loadings be plotted. The thus rotated factor pattern from the 

example of Diesfeldt is shown in Table 2.14, and the corresponding plot is shown in 

Figure 2.2.  
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Table 2.14  

  

Rotated Component Matrix(a) 

 

 

  

  

 
  

Component 

  

 

1 2 

  

 

V14  Weak 0.728 -0.081 

  

 

V4  Healthy (-) 0.713 0.099 

  

 

V5  Tired 0.639 -0.082 

  

 

V6  Old 0.578 0.166 

  

 

V12  Excited (-) 0.540 0.510 

  

 

V15  Future (-) 0.519 0.383 

  

 

V1  Satisfied (-) 0.514 0.416 

  

 

V13  Helpless 0.432 0.217 

  

 

V2  Sleeping (-) 0.398 0.106 

  

 

V7  Lonely 0.233 0.681 

  

 

V9  Visitors (-) 0.143 0.660 

  

 

V8  Friends (-) -0.034 0.596 

  

 

V3  Eating (-) -0.082 0.595 

  

 

V10  Gloomy 0.506 0.526 

  

 

V11  Boredom 0.253 0.479 

  

 

Extraction Method: Principal Component Analysis.  Rotation Method: Varimax 
with Kaiser Normalization. 

 

a  Rotation converged in 3 iterations. 
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Figure 2.2  

Such a plot can be very useful if the variable names aren’t printed over each other. In 

the plot you can see, for example, that Gloomy and Excited have a relatively high 

correlation with each other, while Healthy and Eating hardly correlate with each other.  

According to Diesfeldt there are four factors, but in this section two factors are 

drawn. Is that allowed? No. But the aim was now alone data reduction, not theory.  

2.12 Test statistics        

Based on the pattern factor and the correlations between the factors one can predict the 

values of the correlations between the manifest variables. These predicted correlations 

are called reproduced correlations. The difference between the observed and the 

reproduced correlation is called a residual correlation. Evaluation of the validity of a 

factor model is in principle based on the residual correlations (Mulaik, 1972; Browne, 

1974, 1984; Jöreskog & Sörbom, 1996). This can be done in the following ways.  
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The p-value. The size of the residual correlations is usually summarised in a statistic 

that, under the null hypothesis, asymptotically has a chi-square (2) distribution. The 

higher the residual correlations, the greater 2 (Tucker & Lewis, 1973; Browne, 1984; 

Jöreskog & Sörbom, 1996 Flora & Curran, 2004). On this basis, the p-value is 

calculated, and the null hypothesis is rejected if the p-value is too small (less than 

0.05). In a purely confirmatory analysis, the chi-square contains at the same time a test 

for the number of factors and the specified pattern. In SPSS such an analysis is not 

possible with multiple factors, and the chi-square will test only the number of factors. 

In that case, it will be still be needed to check manually if the pattern factor 

corresponds to the hypothesis. The p-value is usually computed after ML extraction, 

and some of the other extraction methods (e.g., ULS) will not produce a p-value.  

 

A goodness-of-fit  index. Because a small violation of the model often can lead to a 

significant violation of the model if the sample is large (Tucker & Lewis, 1973; Hu, 

Bentler & Kano, 1992), it is recommended to use goodness-of-fit index which reflect 

the size of the violation (similar to Cohen's d in a t-test). There are many goodness-of-

fit indices (for discussion see Finch & West, 1997; Jackson, Gillaspy & Purc-

Stephenson, 2009). We will discuss only the Root Mean Square Error of 

Approximation (RMSEA) (Steiger, 1990), because its theoretical foundation best 

reflects that the null hypothesis is not exactly the hypothesis that we want to test 

(Raykov, 1998). The RMSEA is not calculated by SPSS; you have to do it manually. 

The formula is  

  

 

RMSEA = 0 if the value under the root sign is negative.  

Here N is the number of subjects. RMSEA values less than 0.08 represent an 

acceptable fit and values of 0.05 or less represent a good fit (Browne & Cudeck, 1993). 

Note that it is actually a badness-of-fit index.  

 

The eigenvalues. In ancient forms of factor analysis a PCA is done in the first stage. A 

classic criterion is to retain only factors with eigenvalue greater than 1 (Guttman, 1954; 

Kaiser, 1960, 1961). This is also known as the Guttman-Kaiser criterion, the Kaiser-

Guttman criterion, the Kaiser criterion, the Guttman criterion or the minimum 

eigenvalue criterion (but the name ‘Kaiser criterion’ should be discouraged, because 

there is already a ‘Kaiser Standardization’ in rotation, which is something quite 

1

1
2






N

df
RMSEA
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different). The intuitive appeal of the criterion is that  factors with a smaller eigenvalue 

than 1 have an explanatory variance that is smaller than the variance of one manifest 

variable. Such factors are not very influential. Although the Guttman-Kaiser criterion is 

one of the most commonly used criteria, there is hardly any statistical justification for. 

Therefore it is not appropriate for a confirmatory factor analysis, although it is perhaps 

useful in an exploratory factor analysis. However, the latter is questionable, and the 

popularity of the Guttman-Kaiser criterion is perhaps partly due to the fact that it is the 

default in SPSS (Yeomans & Golder, 1982 Reise, Waller & Comrey, 2000). Fabrigar et 

al (1999, p. 278) even write: "In fact, we know of no study of this rule that shows it to 

work well.”  

Another method which is based on the eigenvalues, is the scree test (Cattell, 1966). 

In this method, a plot is made of the successive eigenvalues. If there is a sharp bend in 

the plot, this indicates the number of factors. This works well when the number of 

factors is clear. Finch and West (. 1997, p 466) comment: “The primary problem with 

the scree test Is that it is an ‘eyeball test’; the point of the break in the plot can difficult 

to determine or there may be more than one such break. In such ambiguous cases, 

analysts can easily reach different conclusions concerning the proper number of factors 

to extract (Kaiser, 1970).”  

Perhaps the best method based on eigenvalues is a so-called parallel analysis 

(Horn, 1965). Here, the eigen values are compared with the eigenvalues of a large 

number of simulated samples. See Finch and West (1997), Fabrigar et al. (1999) and 

Reise, Waller and Comrey (2000) for further discussion. This method is not 

implemented in SPSS, but in the free statistical software package R.  

Reading Question. What is the formula for RMSEA?  

  

Explanation  

1               When reporting an article  

Jackson, Gillaspy and Purc-Stephenson (2009) provide an overview of the ways in 

which, in practice, confirmatory factor analyses are reported in APA journals. They 

recommend in a confirmatory factor analysis to report always the following measures:  

1. chi-square, number of degrees of freedom, and p-value;  

2. an incremental fit index such as the Tucker-Lewis index or the comparative fit 

index; and  

3. a residue based fit index such as the RMSEA.  

In this book we use only (1) and (3), because this is only an introduction. For the 

benefit of readers who want to follow the above recommendation, the Appendix to this 

chapter describes how to calculate the indices of (2).  



42 Factor analysis and item analysis 

 

2               Criticism of the use of fit indices  

The use of fit indexes is debatable. First, the cutoff at 0.05 is not robust in the sense 

that there might be other cutoffs that should be used for non-normal distributions 

(Yuan, 2005). Second, a violation that is ‘small’ as measured by fit indices, can be 

important. Fit indices measure only the overall fit of the model, but are insensitive to 

local violations (Fan and Sivo, 2005, 2007, Saris, Satorra & Van der Veld., 2009; 

Heene et al, 2012) and say little about the importance of the causal relationship that 

created the violation (Barrett, 2007; Hayduk et al., 2007). Consider the imaginary 

situation in which two intelligence items correlate more with each other than the model 

predicts, and that the cause of this is that both items depend in part on skin color. This 

will show up as a large residual correlation. However, if the other items do satisfy the 

model, then that single residual correlation will change little to the value of a fit index, 

and the index will therefore indicate that the fit is good. But is this violation 

unimportant? Not when you are assessed on intelligence during a job application and 

these two items cause you to be dismissed. “Close but significant ill-fit in SEM-speak, 

translates as ‘close to being sued’ in legal-speak” (Hayduk et al., 2007, pp. 848-849). A 

small violation is not necessarily a trivial violation, and some authors therefore 

recommend to also investigate the residues (Hayduk et al., 2007; Jackson, Gillaspy & 

Purc-Stehpenson, 2009). But how exactly this should done and whether it is a solution 

is not clear, and there are other possible approaches (Saris, Satorra & Van der Veld, 

2009). Mulaik (2007, p. 890) notes that the history of science is one of increasingly 

better approximations in each field. Wegener's theory of continental drift could occur, 

for example because the coastlines of Africa and South America approximately fit into 

each other. According Mulaik it would therefore be ridiculous to banish the idea of 

approximations from science. There must be room for approximations. Nevertheless, it 

is possible to have valid criticisms to the currently existing indexes.  

              The criticism to fit indices is primarily that they are sometimes too 

optimistic, in the sense that they can qualify a violation as ‘small’ even when it is 

important. To my knowledge, the criticism is never that established fit indices would 

sometimes be too pessimistic in the sense that they can qualify a deviation as 'big' when 

it is actually unimportant. If the chi-square is significant and the RMSEA is large, there 

is therefore no doubt that the model does not fit the data well. In other cases, discussion 

may arise. As will be argued in the next chapter, you should always compare the model 

with alternative models.  

Example 1  

In the confirmatory factor analysis with one factor for the Diesfeldt data we use the 

part of the output displayed in table 2.15. Based on the p-value, the model of a single 

factor for all items would be rejected. On the basis of this output, the RMSEA can be 

calculated as 0.089. This, too, indicates that the one-factor model is not suitable for 

these data.  



Chapter 2 – Conducting and reporting factor analysis 43 

 

Table 2.15  

  

Goodness-of-fit Test 

 

 
 

   

 

Chi-Square df Sig. 

 

 

230.364 90 0.000 

 

      

Example 2  

In the exploratory factor analysis that Diesfeldt himself conducted, he deployed the 

minimum eigenvalue criterion. The relevant part of the output is displayed in table 

2.16. In the Initial Eigenvalues/ Total column, there are four eigenvalues which are 

greater than 1. On this basis, there are four factors retained. (Earlier we discussed just 

three factors; we will later discuss the fourth factor). 

Table 2.16  

 

  

 

 
Component 

Initial Eigenvalues 

 

 

Total % of Variance Cumulative % 

 

 

1 4.555 30.369 30.369 

 

 

2 1.603 10.684 41.053 

 

 

3 1.237 8.245 49.299 

 

 

4 1.018 6.790 56.088 

 

 

5 0.914 6.093 62.181 

 

 

6 0.815 5.436 67.617 

 

 

7 0.795 5.299 72.916 

 

 

8 0.758 5.051 77.968 

 

 

9 0.684 4.557 82.525 

 

 

10 0.567 3.782 86.306 

 

 

11 0.484 3.228 89.535 

 

 

12 0.453 3.017 92.552 

 

 

13 0.423 2.822 95.374 

 

 

14 0.357 2.379 97.753 

 

 

15 0.337 2.247 100.000 
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2.13 Decision               

In a confirmatory factor analysis, the decision contains an assessment of the validity of 

the hypothesis. If the hypothesis is found to be invalid, it should be described – if 

possible – whether the violation concerns the number of factors or the presumed factor 

pattern. In the latter case, also try to indicate the loadings that violate the model. An 

analysis in SPSS does not provide significance tests for the loadings, and rejection of 

the null hypothesis thus leads to the conclusion that more factors are needed.  

The usual practice is to consider not only the p-value, but also the goodness-of-fit 

indices and even the interpretation (see the next section). In this book you should 

adhere to the rules listed in table 2.17. The boundaries of ‘acceptable’ and ‘good’ are 

based on Browne and Cudeck (1993). According to this table, the decision should be 

based largely on the p-value and the RMSEA, but in some cases the interpretability 

plays a role. However, there is criticism possible to this decision rules (see notes).  

Table 2.17 Decision rules about number of factors 

P-value  Goodness-of-fit  Meaning  Decision  

p > 0.05    Retain the null 

hypothesis 

The model has enough 

factors  

        

p < 0.05  RMSEA < 0.05  The null hypothesis not 

exactly true, but it has a 

good fit  

The model has enough 

factors  

        

p < 0.05  RMSEA > 0.05  

RMSEA < 0.08  

The null hypothesis is not 

exactly true, but has an 

acceptable fit  

Doubt; decision depends 

on competing theories, 

interpretation and other 

factor analyses  

        

p < 0.05  RMSEA > 0.08  the null hypothesis is not 

true, and the fit is poor  

The model has too few 

factors  

  

In a confirmatory fixed-model analysis in test construction one has to specify which 

items do not fit the model. Those are  

- Items that have a high loading on another factor, and  

- probably items that have a low load on the intended factor.  

In an exploratory factor analysis, there is no hypothesis and therefore one cannot 

decide about it. Nevertheless, it is useful to report in this section what you decided 

about the number of factors.  
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Explanation  

1               The null hypothesis is the research hypothesis  

Earlier you learned in statistics that the null hypothesis is usually the inverse of the 

research hypothesis, that you're 'happy' if the null hypothesis is rejected. But if you 

really have a good memory, you also remember that there is a rule that is even more 

important: the null hypothesis must always be testable. This latter rule is now 

important. The research hypothesis in factor analysis is that there are at most k 

common factors. This hypothesis is been testable, but the reverse hypothesis, that there 

are more than k factors is not testable. The correlation matrix can always be reproduced 

perfectly by assuming as many factors as there are manifest variables. Therefore, in 

factor analysis the null hypothesis must be equal to the research hypothesis. 

Therefore, you should be happy if the test is not significant.  

If you remember our earlier messages of how some psychologists deal with 

statistics, you will surely understand that this reversal sometimes leads to hilarious 

moments. For example, one student happily visits her supervisor, as a factor analysis 

with the hypothesised three factors showed a large p-value, and the supervisor is 

disappointed because the result is "not significant." (Please note that in this example 

the student is right). Or conversely, the student is happy because after days of "data 

massage" she finally got the data so far that the result is “significant”. Oh well, with 

any luck that person also confuses whether one should retain or reject the null 

hypothesis if p < 0.05, so it might still be good.  

2               Huh, retain the null hypothesis when p < 0.05?  

In Table 2.17 decision rules are given that deviate from the rules that we used until 

now in t-tests and ANOVA. There you could never maintain the null hypothesis after a 

significant result. It’s different here, sometimes. Why?  

The research hypothesis is the null hypothesis, but the problem is that the null 

hypothesis is so exact that there will always minor deviations be found in practice if the 

sample is large enough. These abnormalities may be unimportant. The question is not 

whether the null hypothesis is exactly true, but whether it is approximately true (Tucker 

& Lewis, 1973; Steiger, 1990; Hu, Bentler & Kano, 1992; Browne & Cudeck, 1993; 

Raykov, 1998). That's why you often base the decision not only on the p-value, but 

also the goodness-of-fit. This is compatible to what you previously learned about effect 

size in ANOVA.  

Only if the deviation is non-significant (p > .05) the above argument does not apply, 

and then you look at the p-value. In that case there is, moreover, still the problem that 

the sample might be too small. Whether the standard bounds for the RMSEA are 

exceeded, is in itself a testable hypothesis (MacCallum, Browne & Sugawara, 1996). 

On this basis Steiger recommends only to retain the null hypothesis if the RMSEA is 
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significantly smaller than 0.07, which is possible only if the sample is large enough. 

How to test this, is too complicated to discuss here. 

There is criticism possible on the decision rules given here. The previous section 

has already discussed criticism on fit indices such as RMSEA. Someone who thinks 

that you should not use fit indices, will not endorse the above decision rules. In 

addition, one may criticize the recommendation to look at the interpretation when 

deciding on the number of factors. In short, the decision in factor analysis is not always 

as straightforward as you might think. The journal Personality and Individual 

Differences devoted a special issue to the question in 2007 whether and how to make 

that decision. And all eleven articles obviously disagreed (Barrett, 2007; Bentler, 2007; 

Goffin, 2007, Hayduk et al., 2007; Markland, 2007; McIntosh, 2007; Miles & Shevlin, 

2007, Millsap, 2007 b; Mulaik, 2007; Steiger, 2007). The editors (Vernon & Eysenck, 

2007, p. 813) concluded thus: “The diversity of the opinions overexpressed in these 

papers suggests that the best way to evaluate model-fit is still an evolving issue which 

will continue to be a subject of debate.” As this debate lasts for 70 year already, you 

can assume that you will not live long enought to see the solution. Nevertheless, it is 

desirable to provide some simple rules of thumb in this introduction, so that you at 

least take a defendable decision.  

3               What to do with doubt  

A third deviation in the decision rules is that there is room for doubt. I guess that some 

students do not love that. But the possibility of doubt reflects better the actual situation 

than a black or white decision. The fact is simply that we sometimes do not know the 

answer because the data do not provide clarity.  

Let's see what you should do in that situation. In itself an RMSEA between 0.05 

and 0.08 provides no hard evidence to refute the theory. In a purely confirmatory factor 

analysis, and if there is no competing theory with acceptable fit, it is logical to retain 

the theory in this case. If there is a competing theory with an acceptable fit, an 

assessment must be made taking into account the fit and the parsinomy of both 

theories. That’s beyond the scope of this chapter.   

In a more exploratory analysis, there is always the competing theory that one needs 

one factor more than in the current analysis. Or two factors. Or three. And so on. Or 

one factor less. Or two. And so on. In short, in this case there is a series of competing 

theories, some of which will also have an acceptable or even good fit. Since there was 

no a priori theory, the fact that the current analysis resulted in an acceptable fit, is no 

convincing reason to decide that this is the correct number of factors. In that case, it is 

necessary to do multiple factor analysis, each with a different number of factors. The 

decision should be taken in this case by an assessment (see next chapter) of 

interpretability, fit and parsinomy.  
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Example 1A  

In the example of Diesfeldt we did a confirmatory factor analysis with one factor. 

Because p < 0.05 and RMSEA > 0.08 we conclude that one factor is not enough to 

explain the correlations. There are many items with a low loading (< 0.5). That may be 

caused by the presence of a second factor. These items are eligible for removal from 

the Depression List (see section 2.14 INTERPRETATION).  

Example 1B  

In Example 1A, we used a fixed-model analysis: after rejecting the hypothesis we 

remove items that do not fit. In a fixed-domain analysis, on the other hand, the solution 

is to assume more factors, without deleting items. That means that follow-up analyses 

should be done, with the number of factors made larger until the fit is good enough. 

Since we have no a priori hypothesis anymore (because it was rejected in Example 

1A), this is now an exploratory analysis. Table 2.18 shows the results for the p-value 

and the RMSEA.  

Table 2.18  

number of factors  Chi-square  df  Sig.  N  RMSEA  

1  230.364  90  0.000 197  0.089  

2  151.346  76  0.000  197  0.071  

3  91.694  63  0.011  197  0.048  

4  57.626  51  0.244  197  0.026  

 

If we use only the p-values, the conclusion is that there are at most four factors, in 

agreement with what Diesfeldt concluded on the basis of the minimum eigenvalue 

criterion. If we consider only the RMSEA-values, it is concluded that good fit is 

achieved with three factors, and an acceptable fit with two factors. There are two to 

four factors. The further choice between them should depend on the interpretability of 

the factor patterns, the efficiency of the resulting theory, and the fit. This will be 

further discussed in the next chapter.  

Example 2  

Four factors with eigenvalue greater than 1 were found in the exploratory factor 

analysis of Diesfeldt. If the Guttman-Kaiser criterion is used, therefore, the decision is 

that there are four factors. This criterion is not recommended (see section 2.12 

Assessment).  

Reading Question. Which combination of p-value and RMSEA will 

certainly reject the null hypothesis? What do you need after rejection: 

more factors, fewer factors, more items, less items, more people, fewer 

people, or a combination?  
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2.14 Interpretation               

In the interpretation section you describe the meaning of the factors. In a confirmatory 

factor analysis, this follows from the hypothesis. In an exploratory factor analysis you 

determine this on the basis of the factor pattern and the content of the items. The 

variables with the highest factor loadings (say, > 0.90) correlate highly with that factor 

and are the most decisive for the name of the factor. If the interpretation of a factor is 

dubious because there are few variables with a high loading on the factor, or because 

no characteristic feature in the content of these items is discovered, state these doubts. 

The name of a factor should – to avoid confusion – preferably not be the same as the 

name of a manifest variable, and one factor should not be defined by only one item 

(Henson & Roberts, 2006).  

In the case of an item analysis you also describe what the consequences are for the 

way the items are used in the scoring of the scale. In addition, you give  

- whether it is justifiable to use a single overall score per person, and if not  

- into which sub-scales the item set should be divided, and / or  

- which items have to be removed.  

For this you rely on the factor pattern :  

- if there is only one factor, this justifies the use of a single total score per person  

- the subscales consist of the factors, and each subscale consists of the items 

highly loading on one factor and only on that factor.           

Items that load low on each factor, or that load high on several factors, must be 

removed. That is, they are not used in a (sub)scale to determine a score and they can be 

omitted from the test.  

The next question is at which values one has to consider a loading as 'high' or 'low'. 

Floyd and Widaman (1995, p. 294) write : "In exploratory analysis, factor loadings are 

generally considered to be meaningful when they exceed .30 or .40." Henson and 

Roberts (2006, p. 402) report on the basis of 37 articles that in practice a cutoff of 0.30 

to 0.50 is being used, with 0.40 as median. This says that many people have the 

thought that the bound should be around 0:40; but any justification for that thought is 

missing. Lambert, Wildt and Durand (1991) argue that such rules of thumb erroneously 

ignore the effects of sampling fluctuations. A loading of 0.50 in the population might 

be 0.30 in the sample, or vice versa. Without confidence intervals of the loadings, little 

can be said about it. Therefore, it is not yet possible to give a well-founded rule of 

thumb. In a confirmatory analysis, the question is irrelevant because if SEM is used, it 

is tested whether the loadings which would have to be ‘low’, are equal to zero.  

Explanation  

The factors are latent variables and it is not immediately clear what their meaning is. 

Therefore they will be labeled in the output as Factor 1, Factor 2, and so on. For 

theory formation this is only useful if a substantive meaning can be attached to the 

factors.  
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Indeed, when reading this chapter, you might occasionally have felt some 

discomfort. We assume a latent variable that we vaguely describe as a common factor. 

But what is the nature of that variable? That is exactly what you need to  think about in 

the interpretation phase.  

The interpretation phase has a fundamentally different course than with analysis of 

variance and t-tests, in which only manifest variables were used. The question there 

was what the decision meant for causality, but it was never asked what the variables 

meant. In factor analysis, this is the one of the main questions.  

At an abstract level, it is, actually still comparable. For causality is not observable, 

and therefore latent. That is why it is sometimes so hard to say anything about it. 

Especially, inventing plausible confounds is difficult for many students. That's because 

confounding variables are usually latent. You could say that a common factor is 

actually one big confounding variable. Since factor analysis has a different objective, 

we do not see that as negative but as positive, provided that we get a clear picture of 

that variable.  

In an exploratory factor analysis, it is therefore important that we get a clear picture 

of the factors. Usually this amounts to inventing good names for the factors. But it is 

supposed to be more than a word game. What matters, is that you have a simple rule 

describing which items load highly on which factor. You must seek the characteristic 

feature in the content of the items that have loadings on the factor. That characteristic 

feature should preferably enable predictions about new items (i.e., all items that have 

this feature load high on the factor, all items that do not have this feature load low on 

the factor).  

By the way, it frequently happens that it is not possible to find such a simple rule. 

One possibility is that there are very few items with high loading on the factor. Usually 

it is then possible to recognise more than one common feature, which means that the 

meaning of the factor is unclear. In the running example (examining Diesfeldt the 

Depression List) the fourth factor, for example, has only the item Sleeping; In addition, 

the loading of  Eating is also high, but this item also loads on another factor. What is 

the characteristic feature here?  

If the factor pattern is not interpretable, this can be a reason to opt for a larger or 

smaller number of factors, and therefore redo the analysis with the new number of 

factors. In doing so, exploratory factor analysis, at least as it is used in psychology, has 

a larger subjective component than analysis of variance. This is also a reason why 

many prefer confirmatory factor analysis.  

In a confirmatory factor analysis the interpretation is, in principle, less problematic 

than in exploratory factor analysis:  

- In a confirmatory analysis, if the hypothesis is retained, the hypothesis already 

describes the meaning of the factors, and then it is sufficient to refer to it, and 

to identify any abnormalities or additional interpretations.  



50 Factor analysis and item analysis 

 

- In a confirmatory factor analysis, if the null hypothesis is rejected, you will not 

actually believe in the existence of common factors, and it makes no sense to 

interprete them.  

Example 1  

In this example, we did a confirmatory factor analysis with one factor. We concluded 

that the model should be rejected. The interpretation is: the common factor 

Depressivity does not exist. There is no factor that is the only factor governing these 

items. In other words, these items do not measure all the same. And therefore, they do 

not measure only depression. Maybe some items measure depression and other items 

measure something else. Or maybe the construct 'depression' is not good and there are 

actually two or more different types of depression. Anyway, it's not justified with these 

items to use one test score per person.  

Because the analysis was fixed-model, the next question is which items can be 

removed to come to an acceptable scale. These are mainly items that have a low 

loading in the analysis of a single factor; So especially Eating, Sleeping and Friends. 

As a rule of thumb, I often require that an item loads at least 0.50 on the intended 

factor. But as argued above, there is really no good cutoff possible.  

If we apply the bound of 0.50 to the loadings, only the following items are retained. 

The items are sorted by decreasing load (see Table 2.19).  

Table 2.19  

    

 

V12  Excited (-) 0.729 

 

 

V10  Gloomy 0.698 

 

 

V1  Satisfied (-) 0.622 

 

 

V15  Future (-) 0.614 

 

 

V7  Lonely 0.563 

 

 

V4  Healthy (-) 0.544 

 

     

This rule has the appearance of objectivity, but the next item has a load of 0.498 and 

you probably understand that this is so close to 0.50 that you could include it as well. 

But the next item has a loading of 0.478, so would you include that one as well? Does 

it ever stop?  

If the aim is to avoid including items that have a negative contribution to the 

reliability, then it is not the height of the loading itself, but its relationship with the 

other loadings that matter. For example, suppose that 10 items are essentially tau 

equivalent, and that the last item has loading 0.5. If the loadings of the other items are 
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0.7, then it can be calculated that the last item has a negative effect on the reliability of 

the total score. But if the other items have loading 0.5, the last item has a positive 

contribution to the reliability of the total score. Whether a loading of 0.5 is high 

enough, therefore, depends on loadings of other items. Only when an item has a small 

loading compared with the other items, it will have a negative impact on the reliability. 

Thus, there is no absolute bound possible and it is pointless to debate whether it should 

be 0.30, 0.50 or 0.70.  

Anyway, we should decide. Because there is still a reliability analysis that should be 

done later and in which more items can be removed, I would remove a minimal 

number of items and suggest this scale:  

 

Spirited: Excited, Gloomy, Satisfied, Future, Lonely, Healthy, Old, Visitors, 

Weak, Boredom, Helpless, Tired  

  

Removed: Eating, Sleeping, Friends   

 

After this, the one-factor model should be tested again for the remaining items. 

Example 2  

In this example, we did an exploratory factor analysis, which resulted in four factors. 

On the basis of the loadings, Diesfeldt called these factors Spirited, Health, Social and 

Sleep. The last factor only has the item Sleeping. Therefore, one can hardly consider it 

as a common factor. This factor cannot be interpreted. The factors Health and Social 

both have only three items with loadings that exceed 0:50. Due to this small number it 

can be difficult to determine whether the characteristic feature is indeed understood. 

Therefore, the interpretation of these factors is somewhat dubious.  

For the scale construction we only use three factors: Spirited, Health and Social 

(given the doubts about the latter two factors, one could also decide to only use 

Spirited). The items Gloomy, Helpless, Eating should be removed from the list, 

because they load low on all factors or high on two factors. Sleeping should also be 

removed, because it belongs to a factor that is removed. The resulting scales are thus:  

  

Spirited: Future, Excited, Boredom, Satisfied  

Health: Weak, Healthy, Tired  

Social: Visitors, Friends, Lonely  

  

Next, we have to conduct a reliability analysis to examine whether these scales contain 

enough items – and it looks bleak.  
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2.15 Summary basic report               

In table 2.20 the differences between exploratory and confirmatory factor analysis are 

put together. This is just a recommendation, not a description of what is actually done 

by everyone.  

Table 2.20  

  Confirmatory  Exploratory  Data reduction  

Goal  Test the 

hypotheses  

Forming 

hypothesis  

Reduce number of 

variables  

        

Hypotheses  Number of 

factors and 

scheme of factor 

pattern  

-    

        

Extraction  ML  ML  PCA  

        

Number of 

factors  

Number of 

scales 

Vary in multiple 

analyses  

Depending on 

purpose, often 1 or 

2  

        

Rotation  Promax *  Promax  None or varimax  

        

Decision  p-value  

RMSEA**  

Comparison of 

analyses on p-

value, RMSEA, 

and 

interpretability  

None or 

Eigenvalues 

        

Interpretation 

of factors  

Follows from 

hypothesis 

Characteristic 

feature  

None  

        

Effect on 

scale  

Remove items  Split into 

subscales  

Not applicable 

*) See note in the text; **) also see Table 2.17.  

 

In the Confirmatory column, the rotation 'promax’ is specified, but note the following. 

In a confirmatory factor analysis with one factor, no rotation is possible. A 

confirmatory factor analysis of multiple factors must be preferably be conducted in 

SEM, and then rotation is not an issue. However, when it is desired to approach a 

confirmatory factor analysis of multiple factors in SPSS, then it is best to use an 

oblique rotation such as promax.  
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The column Exploratory states that one must make a decision by comparing 

multiple analyses. This is discussed in the next chapter. The basic principle is: many 

confirmatory analyses together form an exploratory analysis. Indeed, if one randomly 

examine all hypotheses, one is looking for a good hypothesis, which is exploratory. 

In practice, the number of factors in the factor analysis is often based on the 

eigenvalues, for example, the Guttman-Kaiser-criterion (number of eigenvalues > 1) or 

the scree test. These methods are not recommended here, but if someone uses them, 

then the resulting analysis should be viewed as exploratory, because the number of 

factors is not determined by a hypothesis.  

If we agree that the decision in a confirmatory factor analysis should be based on 

the p-value and RMSEA and possibly other fit indices (see paragraph 2.18), then it 

seems illogical to base the decision in an exploratory analysis on other statistics, such 

as the eigenvalues. After all, the hypothesis which is formed in an exploratory analysis, 

should later be evaluated with a confirmatory study. If one uses different criteria, this 

process might not converge.  

2.15.1 Example 1               

Design  

Manifest variables: the 15 items from the Depression List.  

Degree of control  

Passively observed.  

Aggregated data  

The correlation matrix of items (see Table 2.3).  

Hypotheses  

A confirmatory factor analysis with one factor. In case of violation, the analysis will be 

based on a fixed model, because it concerns the construction of a scale.  

Analysis method  

ML extraction; no rotation is possible.  

Estimators  

The factor loadings (from which the communalities can be derived by squaring) are 

shown in Table 2.21. (This is essentially the SPSS-output Table 2.8, but formatted 

differently. One may prefer to display loadings in two decimal places. This is not done 

here to avoid confusion. One should preferably also report the largest eigenvalues, 

even though they are not relevant in a confirmatory factor analysis.)  
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Table 2.21 Factor Loadings  

Item   Factor loading  

Satisfied  v1 (-) .622  

Sleeping v2 (-) .306  

Eating v3 (-) .273  

Healthy v4 (-) .544  

Tired  v5  .375  

Old  v6  .498  

Lonely  v7  .563  

Friends  v8 (-) .310  

Visitors v9 (-) .478  

Gloomy  v10  .698  

Boredom v11  .453  

Excited v12 (-) .729  

Helpless  v13  .429  

Weak  v14  .457  

Future v15 (-) .614  

  

Test statistics 

(Table 2.9 :) 2 (90) = 230.364, p < .001, RMSEA = 0.089.  

Decision  

The items do not satisfy the one-factor model and the violation is not acceptable 

(RMSEA > 0.08). There are many items with a low loading (< 0.50), and perhaps these 

items depend on another factor.  

Interpretation  

There is not one common factor 'depressivity' that describes these items properly. The 

items do not measure all the same factor. There is no justification with these items to 

use one test score per person. The item list should be divided into multiple scales or 

some items should be removed. In the latter case, the items Eating, Sleeping, and 

Friends should probably be removed.  

2.15.2 Example 2               

(This is essentially the analysis reported Diesfeldt.)  

Design  

Manifest variables: the 15 items from the Depression List.  
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Degree of control  

Passively observed.  

Aggregated data  

The correlation matrix of items (see Table 2.3).  

Hypotheses  

An exploratory factor analysis.  

Analysis method  

Principal component analysis with varimax rotation.  

Estimators  

The factor loadings (from which the communalities can be computed) are shown in 

Table 2.22. (This is essentially the SPSS-output of Table 2.13, but formatted 

differently. One may prefer to display loadings in two decimal places. This is not done 

here to avoid confusion.)  

Table 2.22 Factor Pattern of four varimax-rotated principal components  

Item    Spirited  Health  Social  factor 

4  

Future v15 (-) .771  .116  .025  .137  

Excited v12 (-) .750  .204  .229  .029  

Boredom v11  .598  -.081  .185  .140  

Satisfied  v1 (-) .548  .224  .205  .308  

Gloomy  v10  .531  .361  .440  -.122  

Helpless  v13  .483  .299  .095  -.254  

Old  v6  .439  .346  .003  .313  

Weak  v14  .096  .849  .097  -.067  

Healthy v4 (-) .253  .693  .154  .115  

Tired  v5  .119  .596  -.045  .383  

Visitors v9 (-) .138  .192  .775  -.077  

Friends  v8 (-) .044  -.007  .680  .050  

Lonely  v7  .340  .115  .639  .100  

Eating v3 (-) .153  -.264  .490  .480  

Sleeping v2 (-) .120  .201  .013  .811  

Test statistics 

The number of factors is determined by the minimum eigenvalue criterion. There were 

four eigenvalues greater than 1 (see Table 2.11, column Initial Eigenvalues, Total).  
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Decision  

There are four factors with an eigenvalue greater than 1. Therefore, four factors are 

retained.  

Interpretation  

On the basis of the loadings, the factors may be interpreted respectively as Spirits, 

Health, Social and Sleep. The fourth factor is not interpretable, because only one item 

loads on it. Interpretation of Health and Social dubious, since there are only three items 

that load on these factors. The items Gloomy, Helpless, Eating should be removed 

from the list, because they load low on all factors or high on two factors. In addition, in 

this case the item Sleeping has to be removed, because it belongs to a factor that is 

removed. The resulting scales which are eligible for further reliability analysis, are 

therefore:  

 

             Spirited: Future, Excited, Boredom, Satisfied  

              Health: Weak, Healthy, Tired  

              Social: Visitors, Friends, Lonely  

2.16 Concise Report               

A concise report (or short report) is a summary of a basic report in a continuous text 

that can serve as the basis for a report in an article. The concise report contains  

- the design;  

- the analysis (possibly with the hypothesis);  

- the test statistics;  

- decisions;  

- the core of the interpretation.  

For guidelines on reporting in an article, see Floyd and Widaman (1995), Fabrigar, 

Wegener, MacCallum and Strahan (1999), McDonald and Ho (2002), Costello and 

Osborne (2005), Henson and Roberts (2006), Jackson, Gillaspy and purc-Stephenson 

(2009) and Ten Holt, Van Duijn and Boomsma (2010).  

2.16.1 Example 1               

With the 15 items from the Depression List a confirmatory ML–factor analysis was 

conducted for the hypothesis that there is one common factor for these items. There 

was a significant violation of the model (2 (90) = 230.364; p < 0.001). The fit was not 

acceptable (RMSEA = 0.089). On this basis the one-factor model was rejected for these 

items. The conclusion is that the items do not constitute one scale.  

2.16.2 Example 2               

The 15 items of the Depression List were examined with an exploratory principal 

component analysis with varimax-rotation. There were four factors with an eigenvalue 
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> 1 (the eigenvalues were 4.56, 1.60, 1.24 and 1.02). The fourth factor has no obvious 

interpretation. The other three factors can be described as Spirited, Health and Social. 

For the scale construction, five items must be removed because they do not clearly 

belong to one of these three factors. The remaining three scales contain four, three, and 

three items, respectively. 

2.17 Visualization : reading a loading plot               

In a factor analysis with two orthogonal factors, factor loadings are often displayed in 

a plot. In that case, each factor is shown as an axis, and each variable as a point. The 

factor loadings of the variable act as the coordinates of the point. If the factor model is 

correct, the correlations between the variables can be inferred from the plot: Indicate 

the line segment from the origin to one variable as a, and the line segment from the 

origin to the other variable as b, then the correlation between the variables is 

 

( )* ( )*cos(angle , )abr length a length b a b  

Explanation  

The above formula is only useful if you remember that cos0 1  , cos90 0  , and 

cos180 1   . The formula can also be written differently. If one variable has 

loadings  1 2( , )a a , and the other variable has loadings 1 2( , )b b , then the correlation is 

equal to the so-called inner product of the loadings:  

 

1 1 2 2abr a b a b   

The last formula is convenient for computing the correlation, but the first formula is 

more helpful if you want to estimate the correlation from visual clues in the plot. If you 

apply the last formula to compute the reproduced correlation of a variable with itself, 

you get 
2 2

1 2aar a a  , and that is the communality of the variable. In the plot this is 

the square of the length of the line segment a.  

Example  

Earlier the plot of Figure 2.3 was obtained with PCA of the Diesfeldt data.  
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Figure 2.3  

Table 2.23 shows some examples in which a conclusion is drawn about a correlation on 

the basis of the lengths and the angles in the plot. This is compared with the actual 

correlation in the right-hand column. In these examples, the conclusion from the plot 

always agrees with the observed correlation. In other cases, there can sometimes be 

discrepancies. But for a rough idea of the correlations, the plot can still be helpful.  

Table 2.23  

Conclusion of plot  Observed 

correlation  

Tired and Weak (bottom right) correlate positively and strongly with 

each other, because they are close together, far from the origin. 

r = .36  

Gloomy and Excited (top right) correlate positively and strongly with 

each other, because they are close to each other, away from the 

origin.  

r = .52  
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Eating and Friends (top left) correlate positively and strongly with 

each other, because they are close together, far from the origin.  

r = .25  

Weak and Lonely have a small positive correlation, because the 

angle (Weak, origin, Lonely) is large but still clearly smaller than 90 

degrees, and they are far away from the origin.  

r = .14  

Eating (left) and Healthy (right) have a correlation of about 0 

because relative to the origin, they are perpendicular to each other.  

r = .04  

Eating (top left), and Weak (bottom right) even have a slightly 

negative correlation with each other, because their angle is slightly 

larger than 90 degrees and they are far from the origin.  

r = -.12  

Helpless and Sleeping have a positive correlation, because their angle 

is small, but this correlation is close to zero because the two points 

are relatively close to the origin.  

r = .03  

Sleeping has a smaller correlation with Future than Old has with 

Future. For the first angle (Sleeping, origin, Future) is approximately 

equal to the second angle (Old, origin, Future), but Sleeping is closer 

to the origin than Old.  

r = .17 and r = .37  

The correlation between Gloomy and Excited is larger than the 

correlation between Satisfied and Future. The angle is in both cases 

approximately the same, but Gloomy and Excited are further away 

from the origin.  

r = .52 and r = .42  

  

For completeness' sake we now consider an example in which the correlation is 

calculated by the inner product formula. Suppose we want to know the correlation 

between Old and Healthy. The figure shows the following coordinates: Old (0.6, 0.2) 

and Healthy (0.7, 0.1). The reproduced correlation is 0.6 * 0.7 + 0.2 * 0.1 = 0.44. If 

you use the precise values shown in the factor pattern, then the calculation is 0.578 * 

0.713 + 0.166 * 0.099 = 0.43. In reality, this correlation was 0.34. The fact that this is 

different from the prediction, means that this output of PCA does not provide a perfect 

description of the correlations. The plot only summarises the correlations, but not all 

details are accurate. 

2.18 Appendix to Chapter 2  

This appendix contains no content belonging to the learning objectives for this book. 

Nevertheless, the information can come in handy if you want to use more fit indexes in 
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a different context, or when you compare the results of SPSS and LISREL for the same 

model.  

2.18.1 The Tucker-Lewis-index and the comparative fit-index               

The Tucker-Lewis-index (TLI, Tucker & Lewis, 1973), also called the non-normed fit 

index (NNFI; Bentler & Bonett, 1980), and the comparative fit index (CFI; Bentler, 

1990), together with the RMSEA are currently the most popular fit indexes (Jackson, 

Gillaspy & Purc-Stephenson, 2009). Both are called incremental fit indexes. Here, the 

model is compared to a null model. The null model is usually defined as the model in 

which all correlations are 0; that model explains no correlation at all.  

The TLI is defined as  
2 2

null null model model

2

null null

/ /
TLI

/ 1

df df

df

 







 

Here, TLI > 0.95 can be regarded as a good fit (Hu & Bentler, 1999), 0.95 TLI 0.90 

as acceptable fit, and TLI < 0.90 as bad fit. The TLI can be interpreted as the degree to 

which the model explains the correlations.  

The CFI is defined as  
2 2

null null model model

2

null null

( ) ( )
CFI

df df

df

 



  



 

For the CFI the same boundaries are used as for the TLI.  

If you want to compute the TLI and CFI, you may want to use a SEM  program, 

because it will provide you with these indexes and many other fit indexes. But if you 

want, you can do it with SPSS. First, determine the chi-square of the null model. This 

can be done in the dialogue box of factor analysis by asking under the Descriptives 

button for ‘KMO and Bartlett's test of sphericity’, or in the syntax after the PRINT 

command – add the keyword SME. The chi-square and df which you get with Bartlett's 

test of sphericity, constitute a test for the null model, and they are identical to the chi-

square and df which you would get from a ML factor analysis with zero factors (this 

can be derived from the formulas in the Algorithms section of SPSS Help given for 

Bartlett's chi-square and the ML chi-square). Then you can enter it in the formula for 

the TLI and CFI.  

Explanation  

The 'best' model is the model that is exactly correct in the population. For this model, 

the expected value of 
2 equals df . The TLI makes use of the ratio 

2 / df , while 
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the CFI makes use of the difference : 
2 df  . Applied to the best model we have

2 / 1df  and 
2 0df   . Both indexes have the form  

 

null model - my model

null model - best model
 

Thus, your model is placed on a continuum between the null model and the best model 

(this explanation is based on the David Kenny webpage). Figure 2.4 illustrates this.  

 

Figure 2.4  

The above definition of the TLI is the way it is currently written. According to the 

original definition of Tucker and Lewis one would, if the chi-squares of SPSS are being 

used, first have to multiply 
2

null  with 

( 1 (2 5) / 6 2 / 3) / ( 1 (2 5) / 6)N k m N k       . 

Example  

For the one-factor model with Diesfeldt's data we found earlier 2 = 230.364 and df = 

90. Bartlett's test of sphericity yields 2 = 765.483 and df = 105. Then,  

 

TLI = (765.483 / 105 – 230.364 / 90) / (765.483 / 105 – 1) = 0.752. 

CFI = ((765.483 – 105) – (230.364 – 90)) / (765.483 – 105) = 0.787. 

According to these indices the fit of the one-factor model  is bad, too. With the original 

definition of Tucker and Lewis one gets here TLI = 0.751.  

2.18.2 The relationship between the results of SPSS and LISREL  

Sometimes, the same factor model can be tested with both SPSS and LISREL. That is 

true for the one-factor model. Testing a factor model with the ML method in SPSS 

produces essentially the same results as in LISREL. In case anyone wants to calculate 

Null 
model 

Best 
model 

My 
model 

0 1 
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this, I will put it more precisely now. The algorithm used by SPSS is a variant of the 

method of Jöreskog (1967). In SPSS 19 and LISREL 8 (Jöreskog & Sörbom, 1996, 

2006) the same loss function F is minimized. With a one-factor model the resulting 

loadings are therefore the same in both programs, provided that they both converge to 

the minimum. For a model with multiple factors the factor patterns are equal up to 

rotation. The value of chi-square is not quite the same, however. Both programs use a 

formula of the form 
2 'n F  , and both have the same value for F, but LISREL uses 

' 1n N   while SPSS uses ' 1 (2 5) / 6 2 / 3n N k m     . Here, k  is the 

number of manifest variables and m the number of factors. When calculating the fit 

indices, LISREL seems to use not the chi-square (the Minimum Function Fit Chi-

Square), but the Normal Theory Weighted Least Squares Chi-Square. The original 

definition of the TLI is based on the Minimum Fit Function Chi Square (Tucker & 

Lewis, 1973).  

Example  

In Table 2.24, the results of SPSS are compared with those of LISREL for the one-

factor model in the Diesfeldt data. The chi-square in the column LISREL minimum fit 

relate to the chi-square SPSS Factor ML in the manner explained above:  

 
2 2

Lisrel minimum fit SPSS *( 1) / ( 1 (2 5) / 6 2 / 3)N N k m       .  

Table 2.24  

  SPSS 

Factor ML  

LISREL 

minimum fit  

LISREL normal 

theory weighted least 

squares  

Chi-square one-factor (m = 1)  230.364  238.27  247.48  

df  90  90  90  

Chi-square null model (m = 0)  765.483  788.96  1493.66  

Df null model  105  105  105  

RMSEA  0.089 *  0.092 *  0.094  

TLI  0.752 *  0.747 *  0.88  

CFI  0.787 *  0.783 *  0.89  

* Not in output, but calculated from the above results.  

2.18. 3               The use of the term confirmatory factor analysis  

In the literature, the term confirmatory factor analysis is usually used for analyses with 

a SEM program. In this book the choice was made to call some analyses with SPSS 

confirmatory too. In this section, I defend that choice (see Stewart et al., 2001).  

A situation often discussed in this book, is that one wants to examine multiple 

scales on unidimensionality. The items are the manifest variables, and the items within 
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the same scale are believed to have one underlying factor. The hypothesis specifies 

both the number of factors and the pattern of zeros in the factor loadings. It would be 

natural to test that with SEM programs like LISREL. But it is unrealistic to expect this 

from a student of this book. Therefore we try to approximate this analysis with SPSS. 

The number of factors can be tested with the ML chi-square and the fit indices derived 

from it. Additionally we compare the promax-rotated factor pattern with the theoretical 

classification of items in scales. Only the part of the hypothesis that specifies the 

number of factors is tested in the sense that there a p-value is obtained. Nevertheless, 

the nature of the hypothesis is confirmatory, and also part of the analysis is 

confirmatory in the sense that a hypothesis is tested (namely, the hypothesis about the 

number of factors). Another part of the analysis (namely, the rotation) uses an 

exploratory technique, but the aim is still confirmatory. In my opinion it the analysis is 

altohether closer to confirmatory than exploratory factor analysis.  

If the hypothesis is that there is one factor, the outcomes of SPSS and LISREL are 

essentially the same, at least if you used the ML used method in both programs (see 

Section 2.18.2). If the model has several factors then one can, in principle, specify for 

each factor model in SPSS a similar model in LISREL, with the same number of 

factors and essentially the same results for the test (chi-square, df and p-value; 

paragraph 2.18.2 describes what is meant by "essentially the same" here). It would be 

confusing to call the same analysis confirmatory if it is conducted with LISREL but 

exploratory if the same is done with SPSS.  

 





 

3 Comparing multiple factor analyses  
 
 

3.1 Background  

In the previous chapter we concentrated mainly on simple situations where one factor 

analysis already leads to a conclusion. We have seen that in a factor analysis there is 

sometimes doubt about the number of factors. In these more difficult situations, it is 

advisable to base the conclusion on multiple factor analyses.  

In addition, computational problems can sometimes occur in a factor analysis, so 

that the program can not complete the analysis. We will briefly discuss what the causes 

and solutions are.  

3.2 Learning goals  

After studying this chapter, you can compare the results of multiple factor analyses 

with each other in order to arrive at a decision about the number of factors. You can 

also suggest solutions for the most important computational problems of a factor 

analysis.  

3.3 When to compare factor analyses?  

Comparing various factor analyses is especially important if the number of factors is 

unclear. We can distinguish these situations:  

a. A questionable outcome in the statistical evaluation of the model. We saw in 

the previous chapter that it sometimes happens that p < 0.05 while RMSEA is 

between 0.05 and 0.08, and it is doubtful in this case whether there are enough 

factors. In this case it is good to see if there should not be an extra factor.  

b. Confirmatory factor analysis if there is a competing theory. For example, 

suppose the theory of Cattell says that there are four factors, while the theory 

of McGrae and Costa (1987) says that there are five factors in the same data. 

These are two competing theories. If we do a confirmatory factor analysis for 

the theory of Cattell, then it is conceivable that the fit is good. However, that is 

not sufficient to dismiss the theory of McGrae and Costa. After all, the fit of 

the last theory may be even better. Therefore, a confirmatory factor analysis 

must be done for both theories to compare the advantages and disadvantages 

of both theories. Jackson, Gillaspy and Purc-Stephenson (2009) recommend 

always to compare plausible alternative models with confirmatory factor 

analysis.  

c. In an exploratory factor analysis, the number of factors is unknown to begin 

with. Often, the number of factors is determined initially on the basis of the 
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eigenvalues, but this is not a very defensible criterion. It may therefore happen 

that an analysis with a different number of factors yields a better description of 

the data.  

If there is any doubt about the number of factors, it is wise to do multiple factor 

analyses, with a different number of factors. The decision on the number of factors is 

then taken by comparing the results of the analyses, and choosing the analysis that 

offers the best description of the data. The question is then how we can decide which 

analysis is the 'best'. We discuss this in the following sections.  

This discussion is, by nature, theoretical and perhaps even philosophical. In short, it 

is difficult and vague. Do not ask me to give a simple rule of thumb. If there was a 

simple rule, I would have written it down in the previous chapter. But there isn’t. And 

that is also logical, because factor analysis is used mainly in theory formation. Why 

would that be simple?  

3.4 The problem  

Perhaps you think: let’s just do a lot of factor analyses and take the one with the best 

fit. You could do that, but it is not fruitful. The problem is caused by a conflict of two 

laws. The first law is mathematical in nature:  

 

The more factors, the better the fit.  

Let us first consider why that is, and then study what the consequences are.  

In a factor analysis with k variables, there are k * (k - 1) / 2 correlations. In a model 

with f factors, the correlations are explained by f * k factor loadings. The factor 

loadings are estimated by a system of equations to solve it as good as possible, in 

which the correlations act as known, and the factor loadings as unknowns quantities. If 

the number of factors f is large enough, there are more unknown than known quantities, 

and then a perfect solution always possible.  

The second mechanism is more philosophical in nature:  

 

The fewer factors, the more informative the model.  

Above we stated that one can always achieve a perfect fit by assuming enough factors. 

That solution, however, will be meaningless precisely because it is always possible. It 

does not impose any restriction on the data. It is therefore no longer a testable theory, 

and therefore not informative.  

For example, if there are 10 manifest variables, there are 45 correlations (if you do 

not count the diagonal). If you assume five factors, there are 50 factor loadings. In 

other words, you try to explain 45 correlations with 50 other correlations. As if you 

summarise a 45-page book in 50 pages. That does not help. That is no longer a theory, 

it just converts the data into a figment of imagination. You could compare it with the 
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‘theory’ of a homunculus: it doesn’t explain anything, it only shifts the problem to 

another level.  

Even in less extreme cases, you can say that a theory with fewer factors is much 

stronger. Suppose that in the example with the 45 correlations between 10 manifest 

variables, we explain the correlations with four factors, so 40 factor loadings. Then we 

have essentially 45 ‘observations’ explained by 40 assumptions. That is testable, but it 

is still not very impressive. You could say that we have explained not 45 correlations, 

but only 5. A one-factor model, on the other hand, would need only 10 ‘assumptions’ 

about the loadings to explain the correlations. The fewer factors, the greater the 

difference. In other words, the explanatory power of the model is increased when 

there are fewer factors. The model becomes more parsimonious. Therefore, it is 

conceivable that a model with fewer factors is still preferred, even though its fit is not 

as good as the bigger model.  

3.5 The basic principles  

When comparing multiple factor analyses to decide on the number of factors that you 

are going to use, a balance has to be found between the following criteria:  

- Good fit  

- Parsimony (high explanatory power)  

- Interpretability 

The first two principles are discussed in the previous section. It also became clear that 

the principle of parsimony is mainly philosophical in nature. It depends on what you 

expect from a good theory. But the answer is not only parsimony. Interpretability is 

important too. If a less parsimonious model  leads to factors that are better understood 

in terms of content, then it still may be preferred.  

3.6 Elaboration of the basic principles  

Previously we saw that goodness-of-fit can be expressed by the RMSEA. Let us now 

first look at the parsimony of the theory.  

3.6.1 Parsimony  
In section 3.4 has been argued that the explanatory power of a factor model can be 

expressed by comparing two things together:  

- the number of correlations that are explained, and  

- the number of parameters (such as factor loadings) that are used in the 

explanation.  

About the difference between them, I pointed out that this is actually the number of 

correlations that really is explained. For example, if there are 55 correlations explained 

with 50 other correlations (such as factor loadings), then there are only 5 correlations 

explained really. This difference is the number of degrees of freedom. That is the 
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number that we see in the SPSS output in the table Goodness-of-fit test under df when 

ML extraction is being used: 

 

   df  
number of correlations number of parameters
that is being explained that is being used

 

(Incidentally, the number of parameters is somewhat more complicated than just the 

number of factor loadings.)  

In previous analyses such as t-tests, we described the number of degrees of freedom 

as a number indicating at which row of the table one has to look. Now, in factor 

analysis, the number of degrees of freedom has more meaning. The number of degrees 

of freedom is a measure of the explanatary power of the model. The greater the 

number of degrees of freedom, the stronger the model is.  

If you enter too many factors in a confirmatory factor analysis, the number of 

degrees of freedom will be negative. A negative number of degrees of freedom means 

that there are so many parameters that the theory is no longer falsifiable.  

3.6.2 Goodness-of-fit  
Earlier it was stated that the RMSEA is a measure of badness-of-fit. If you study the 

formula, you can see that it also includes the degrees of freedom, and the RMSEA 

decreases with df. That is why the earlier presentation is incomplete. The RMSEA not 

only takes account of the badness-of-fit 𝜒2 but also the parsinomy of the theory. The 

fit (measured with 𝜒2) can only get better as the number of factors increases, but the 

RMSEA could decrease as the improvement in fit is not proportional to the decrease in 

parsinomy.  

Nevertheless, you still have to weigh the fit and the parsinomy separately. The 

RMSEA only takes into account the statistical implications of the df. In addition, an 

parsimonious theory has advantages that are difficult to quantify. For example, the 

theory of Spearman that intelligence is one factor, is considerably simpler than the 

theory of Cattell, which assumes a large number of factors. If both theories had the 

same RMSEA, Spearman's theory would still be preferable.  

The extent to which one theory is better than another can also be tested, provided 

that one theory is a subset of the other: that is to say, one theory (the strong theory) 

includes all assumptions of the other theory (the weak theory) plus additional 

restrictions. In that case, you may deduct the 𝜒2-value and df of one theory from those 

of the other theory: 

  

𝜒2(difference) = 𝜒2(strong theory) - 𝜒2(weak theory)  

df(difference) = df(strong theory) - df(weak theory)  
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Subsequently 𝜒2(difference) is compared with a 𝜒2-distribution with the number of 

degrees of freedom given by df (difference). On this basis, the p-value can be 

calculated.  

In this context, an important model is the so-called null model. This model implies 

that all correlations are zero, which could be described as a model with zero factors. 

This forms the basis for the so-called Comparative Fit Index (CFI) (Bentler, 1990). 

With d = 𝜒2 - df the formula for this index is: CFI = 1 - d (proposed model) / d (null 

model). Hu and Bentler (1999) argue that CFI  0.95 indicates a good fit. It should be 

noted here that the null model is generally not a plausible model. Indeed, Kenny (2015) 

describes it as “the worst possible model”. You may wonder whether it is so 

convincing that a proposed model is better than a nonsense model.  

The procedure for testing the difference in chi-squares can therefore be criticised. It 

really only makes sense if the weak theory is acceptable. Otherwise, it may cause you 

to accept a nonsense model because a still-larger-nonsensical model exists. Millsap 

(2007b, p. 878) writes: "The practice of ignoring the global chi-square tests while at the 

same time conducting and interpreting chi-square difference tests between nested 

models should be prohibited as nonsensical."  

3.6.3 Interpretability  
Because factor analysis is used in theory formation, it is important that the results are 

also fertile for the formulation of theories. Therefore, as the number of factors is 

unclear, the factor patterns of different analyses are compared with each other on 

interpretability. A factor pattern for which a clear substantive theory can be conceived 

is preferable to a factor pattern that is incomprehensible. What matters is that we 

understand the data as good as possible, and that cannot be captured with just statistics 

such as RMSEA and df.  

The extent to which a factor pattern can be interpreted also depends on the context 

of the research, namely on the theories that exist at that moment. It is conceivable that 

a factor pattern that is not well understood at first will become understood after the 

development of a new theory. For example, in the first factor analysis of Spearman, 

there were signs that intelligence had more than one common factor, in the sense that 

some tests correlated higher with each other than was predicted by the theory of a 

single common factor (g). Initially, these deviations were explained away by stating 

that such tests were too similar. Only when Thurstone formulated a theory with several 

factors (the primary abilities), the deviations were understood and were therefore taken 

more seriously.  

That deviations from a theory only get consequences if there is an alternative 

theory, is a pattern that one can also see in other sciences. The famous example is of 

course the constancy of the speed of light, which is a deviation from the classical 

mechanics of Newton and Galilei. When this deviation was established empirically, it 

did not immediately lead to the rejection of classical mechanics. That only happened 
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when Einstein formulated his alternative theory,  in which this fact was no longer a 

deviation, but a fundamental law of nature, that moreover could be derived from other 

laws of nature (the Maxwell equations of electromagnetism).  

The extent to which a factor pattern can be interpreted also depends on a another 

context of the research, namely the practical application. For example: I am regularly 

involved in investigations in nursing homes. Usually it concerns the supply of 

management information. Managers often want very global information. One reason is 

that they have many different types of information about customers, employees, 

finances, subgroups, function groups, functions, products and so on. For an overview, 

one does not want too much information per part. That may be a reason to opt for a 

small number of factors. On the other hand, this detailed information may be important 

for a therapist, which may be a reason for a larger number of factors. So, with the same 

items you might come to the conclusion that there is one scale 'Mood Problems’ if the 

information is intended for managers, while there are two scales 'Depressivity' and 

'Fear' if the information is intended for practitioners.  

Does that mean that factor analysis can bring you to any conclusion you want? No, 

but there is some flexibility. Not because we ingnore the reality, but because different 

degrees of detail are possible in sketches of that reality. In the case of mood problems, 

for example, it is true that depression and anxiety are not exactly the same, but that 

they often go together. So one can wonder whether they are really so different. Maybe 

they are in part the same. A scale purist would say that adding fear and depression is 

comparable with the adding apples and pears. A scale pragmatist would not deny that, 

but say that this is not a problem if one just wants to know how much fruit there is.  

3.7 Examples  

3.7.1 Comparison of multiple analyses in Diesfeldt's research  
See the Diesfeldt study, which was discussed in the previous chapter. Table 3.1 

summarises the results for the p-value and the RMSEA.  

Table 3.1  

Number of factors  Chi-square  df  Sig.  N  RMSEA  

1  230.364  90  0.000 197  0.089  

2  151.346  76  0.000 197  0.071  

3  91.694  63  0.011  197  0.048  

4  57.626  51  0.244  197  0.026  

 

In view of the p-values, a conclusion could be that there are four factors, which is in 

accordance with what Diesfeldt concluded on the basis of the minimum eigenvalue 

criterion. In view of the RMSEA values, the conclusion is that good fit is achieved with 
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three factors, and acceptable fit with two factors. Thus one needs two to four factors. 

The further choice between them should depend on the interpretability of the factor 

patterns, the parsimony of the resulting theory, and the fit.  

If necessary, we can first test whether the difference between these models is 

significant. The results are shown in table 3.2.   

Table 3.2  

Comparison  Chi-square  df  Sig.  N  RMSEA  

2 versus 3 factors  59.652  13  0.000 197  0.135  

3 versus 4 factors  34.068  12  0.001  197  0.097  

 

The differences between these models are thus significant and RMSEA of the 

improvement is in both cases substantial.  

To evaluate the  interpretability we have to study the factor patterns of the analyses 

with good or acceptable fit. Tables 3.3 to 3.7 display the factor patterns with sorted 

loadings. Loadings less then 0.30 have been omitted. The correlation matrix of the 

factors is also shown for the last two analyses.  

Table 3.3  

Pattern Matrixa 

 

Factor 

1 2 

Lonely .642  

Eating (-) .578  

Excited (-) .542  

Visitors (-) .496  

Boredom .493  

Gloomy .465 .319 

Future (-) .453  

Friends (-) .438  

Satisfied (-) .433  

Weak -.306 .910 

Healthy (-)  .689 

Tired  .510 

Old  .371 

Helpless   
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Sleeping (-)   

Extraction Method: Maximum 

Likelihood.  

 Rotation Method: Promax with Kaiser 

Normalization. 

a. Rotation converged in 3 iterations. 

 

Table 3.4  

Pattern Matrixa 

 

Factor 

1 2 3 

Future (-) .706   

Excited (-) .626   

Satisfied (-) .622   

Old .509   

Sleeping (-) .387   

Boredom .380   

Gloomy .365 .326  

Tired .350   

Helpless .339   

Visitors (-)  .944  

Lonely  .571  

Friends (-)  .415  

Weak   .948 

Healthy (-) .313  .425 

Eating (-)    

Extraction Method: Maximum Likelihood.  

 Rotation Method: Promax with Kaiser Normalization. 

a. Rotation converged in 6 iterations. 

 
 



Chapter 3 – Comparing multiple factor analyses 73 

 

Table 3.5  

Factor Correlation Matrix 

Factor 1 2 3 

1 1.000 .564 .390 

2 .564 1.000 .266 

3 .390 .266 1.000 

Extraction Method: Maximum Likelihood.   

 Rotation Method: Promax with Kaiser 

Normalization. 

 

Table 3.6  

Pattern Matrixa 

 

Factor 

1 2 3 4 

Future (-) .746    

Excited (-) .722    

Satisfied (-) .581    

Gloomy .499    

Old .444    

Helpless .432    

Boredom .352    

Visitors (-)  .963   

Lonely  .505   

Friends (-)  .367   

Weak   .932  

Healthy (-)   .446  

Tired   .311  

Eating (-)     

Sleeping (-)    1.012 

Extraction Method: Maximum Likelihood.  

 Rotation Method: Promax with Kaiser Normalization. 

a. Rotation converged in 7 iterations. 
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Table 3.7  

Factor Correlation Matrix 

Factor 1 2 3 4 

1 1.000 .530 .404 .350 

2 .530 1.000 .233 .118 

3 .404 .233 1.000 .130 

4 .350 .118 .130 1.000 

Extraction Method: Maximum Likelihood.   

 Rotation Method: Promax with Kaiser Normalization. 

 
Note now, first, that the last pattern factor is the only one showing simple structure, in 

the sense that each item is loading on at most one factor. In the two other patterns there 

are items that load on two factors. The simple structure can be a reason for choosing 

the solution with four factors.  

It is also important to consider the content of the factors. In the following 

discussion, for convenience, each factor will be indicated with the item that loads the 

highest on it. This is to prevent me from inventing names for factors that will never be 

used again later (normally it is undesirable to identify factors with the name of an 

item). The factors for the three analyses are then shown in table 3.8.  

Table 3.8  

Number of factors  Factor names        

2  Lonely  Weak      

3  Future  Visitors  Weak    

4  Future  Visitors  Weak  Sleeping  

 

The factors of the three analyses have a relationship with each other:  

- First, you see that some factors occur in multiple factor patterns. For example, 

the factor Weak.  

- Secondly, you sometimes see that a group of items that first load on one factor 

disintegrates into two factors in the next analysis. For example, the factor 

Lonely, which disintegrates into Future and Visitors.  

- Third, you can see that, if more factors are assumed, some of the later factors 

have only one or two items.  

I do not claim that these relationships are logically necessary (at least not that I know 

of), but they do occur often.  

The consequences of this for the interpretation are as follows.  
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- As a factor recurs in multiple analyses, this reinforces confidence in the 

existence of that factor. After all, this factor is less the result of a fairly random 

choice in the analysis.  

- A factor that disintegrates into several factors, can indicate two factors that 

correlate relatively high with each other. If two factors correlate extremely high 

(for example > 0.90), it is probably better to view them as one factor. As the 

correlation is lower, there is more reason to differentiate the factors.  

- A factor that has just one or two items loading on it, is difficult to interpret, and 

this may be a sign that there are too many factors being assumed, and / or that 

the items should be used separately (i.e., not in a scale with other items).  

Putting everything together, my reasoning in this example would be as follows:  

- That we have a factor Weak is pretty clear, since it emerges in in all three 

analyses.  

- The factors Future and Visitors emerge in two of the three analyses. This 

suggests that they are indeed two different factors.  

- The fact that the two-factor combines these two factors into one factor can be 

explained by the relatively high correlation between the two factors (0.564).  

- This correlation is not so high that the factors must be considered almost 

identical.  

- The items of the factor Visitors have a clear characteristic feature.  

- For the items of the Future factor this is less clear.  

- All in all I would assume the existence of two different factors Visit and Future.  

That means that the two factor solution falls and the only choice is between three 

factors or four factors. These two factor patterns are much the same in that they both 

factors Future, Visitors and Weak. The only question is whether Sleeping should be 

distinguished as separate factor (as in the four-factor pattern) or that it should be 

counted into Future (as in the three-factor pattern). My reasoning would be:  

- The requirement of simple structure indicates the model with four factors.  

- The relatively small correlation between the factors Sleeping and Future 

(0.350) points to the belief that they are different factors.  

- Sleeping can also be seen as subtantively different from the other items. 

Together with Eating this is the only item which is about an activity (or at least 

a verb). In addition, sleep is often influenced by medicines, which would 

explain the existence of an extra factor.  

- I prefer a clean scale, with items that I'm pretty sure of, over a longer scale with 

items that I don’t trust.  

All in all I would opt for a four-factor solution, and accept that the factor Sleeping is 

difficult to interpret because there is only one item loading on it. For the scale 

construction, this means that the item Sleeping is not included in the Future scale, but 
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maybe it can be reported as a standalone item (which incidentally has the disadvantage 

that its internal consistency reliability cannot be determined).  

Reflecting on my conclusions, you should notice that my conclusions are eventually 

the same as those of Diesfeldt. This, despite the fact that I have based them on other 

analyses. And my reasoning is very long, while that of Diesfeldt is very short. But the 

above reasoning cannot be written in an article as it is way too long. Such a long story 

would never be accepted. Certainly not if the scale construction is only a side issue in 

the article. An option is to use a simple criterion with the same conclusion. In this case 

one could write for example that the number of factors is determined on the basis of the 

significance test, and the model with four factors had no significant violation. Or, if the 

public is less sophisticated, you could write that the number of factors is based on the 

minimum eigenvalue criterion. In both cases you get to the same conclusion without all 

the talking. But it is that an honest description of the decision process? If the subjective 

criterion of interpretability played a role in the decision, that has to be reported, 

otherwise this constitutes a violation of academic integrity. What you often see is that it 

is reported that the number of factors is partly based on the interpretability, without 

explaining exactly what has been done. That is not entirely satisfactory, because it is 

not reproducible. 

3.7.2 The Big Five, Six, Seven, Eight, Nine, Ten  
De Raad and Barelds (2008) used 2365 adjectives on which 1466 subjects had to judge 

themselves and others. They write:  

With respect to the number or factors to extract, we were generally guided by 

two types or considerations. One was psychometrical, mainly determined by 

the eigenvalues, the scree test, and by studying the stability of the factors 

across subsets or the data set; the other was determined by both the 

interpretability or factors and expectations or factors that could appear and by 

factor structures advocated in the research literature. (De Raad & Barelds, 

2008, p.354)  

Thus, you see that the theoretical interpretation plays an important role here. If factor 

analysis is applied in such a way, it is not some kind of blind machine where you enter 

data on side and that spits out answers at the other side. It is rather a means to support 

theory formation.  

In the end, De Raad and Barelds conclude that there are eight factors. They 

conclude this by comparing 10 factor analyses. The factors that resulted from these 10 

analyses are shown in Figure 3.1. You can see in this figure that, regardless of how 

many factors are being assumed, some interpretation of the factors is possible. Why 

then eight factors, and not just the Big Five? The figure shows that the analysis with 

five factors does not result in the factors of the Big Five. That outcome would therefore 

agree only with the number of factors in the Big Five theory, but not with the content 
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of these factors. To get the five factors of the Big Five, eight factors have to be drawn. 

And then one gets also three factors which do not belong to the Big Five.  

Why should the solution agree with the Big Five theory? It is not an irrefutible law 

that a factor analysis must fit in with previous theories. But in this case the already 

existing theory is pretty strong, according to the literature. You can’t just push this 

aside and ignore it. In particular, as the literature – on the basis of similar analyses – 

distinguishes between Agreeableness and Conventionality, you cannot just say that this 

distinction is unnecessary. That would be possible if the data leave no other choice. But 

in this case the data allow a choice that agrees with the literature, namely by assuming 

eight factors.  

If you look at this example, you see that the outcome of the analysis is partly 

motivated by the already existing theory of the Big Five. But it's not like that theory is 

blindly believed. We also look at the data, and the combination of theory and data 

analysis eventually leads to a theory that deviates from the earlier theory. The outcome 

of the analysis incorporates the existing theory, but it is not necessarily a confirmation 

of that theory.  
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Figure 3.1 (Copyright © 2008 by the American Psychological Association. Reproduced with permission. The 

official citation that should be used in referencing this material is De Raad, B., & Barelds, D. P. H., 2008, 'A new 

taxonomy of Dutch personality traits based on a comprehensive and unrestricted list of descriptors', Journal of 

Personality and Social Psychology, 94, 347-364. The use of APA information does not imply endorsement by 

APA) 
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3.8 Computational problems with factor analysis  

The calculations by a factor analysis are not as straightforward as in an ANOVA. The 

estimates are iteratively adjusted. As a result, various problems can arise.  

3.8.1 Some variances 0  
If there is a manifest variable with variance equal to 0, then factor analysis is 

impossible. For such a variable, factor analysis would be completely useless. Variables 

with a positive but small variance can also cause a problem. In SPSS this problem is 

flagged with this warning:  

 

There are fewer than two cases, at least one of the 

variables has zero variance, there is only one variable 

in the analysis, or correlation coefficients could not 

be computed for all pairs of variables. No further 

statistics will be computed.  

After this, as the warning promises, no more output follows.  

To solve this problem, you must first carefully read the content of the warning. 

Each of the mentioned possibilities can be the cause. The first possibility is that there 

are fewer than two subjects. Here you must remember that subjects with missing 

observations are being removed by default (this is the option exclude cases listwise 

under the Options button of the factor analysis dialog box). So if all men miss question 

1, and all women miss question 2, then all subjects are removed from the analysis. And 

then it is logical that no output appears. 

The second possibility is that there is a variable with variance 0. That means that 

everyone has the same score. The correlations with that variable are then undefined, so 

that no factor analysis is possible. Whether one of these problems occurs can be 

verified by using the button Descriptives in the factor analysis, and asking for the 

univariate statistics. And then you have to solve the problem by removing the variable 

that causes the problem. (The options exclude cases pairwise and replace with mean 

should be discouraged, because they usually lead to other problems).  

3.8.2 No convergence  
This means that no final solution has been found. The outcomes shown are 

meaningless and can not be used. In SPSS, this problem is flagged by the following 

footnote:  

 

a. Attempted to extract 3 factors. More than 25 

iterations required. (Convergence = .010). Extraction 

was terminated.  
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In addition, the goodness-of-fit tests are not displayed in these cases. Note that this 

situation is misleading: output is being produced, but the output cannot be trusted. The 

previous issue (variances 0) was much more pronounced, because you know right away 

that there is a problem from the fact that no output appears. But here, you have to read 

the footnote and understand it.  

Sometimes it is helpful to increase the number of allowed iterations, for example, 

from 25 to 250. If convergence is achieved with that, the ensuing  solution may be 

used. If that does not help, then the lack of convergence indicates that the number of 

factors is incorrectly specified. In addition, this can happen if the number of subjects is 

very small (< 100), as a result of which the correlation matrix is too irregular.  

The issue at stake here concerns only convergence in the extraction phase. Non-

convergence can also occur during the rotation phase, but that is much less of a 

problem. The rotation is then not optimal, and if the factor pattern is not interpretable, 

this can be caused by that non-convergence of the rotation. But the unrotated factor 

pattern and the chi-square test can still be trusted. If the rotated factor pattern is 

interpretable, then there is no problem.  

3.8.3 Communality greater than 1  
Communality is equal to the square of a multiple correlation and therefore it cannot be 

greater than 1. But sometimes a factor analysis leads to estimates where the 

communality is greater than 1. That cannot be a good estimate. Such events are known 

as Heywood cases. Modern factor analysis programs ensure that the communality 

usually stays smaller than one. SPSS issues in such cases a footnote – below the table 

Communalities – with the following warning:  

 

a. One or more communalitiy estimates greater than 1 

were encountered during iterations. The resulting 

solution should be interpreted with caution.  

If the final solution has a communality close to 1 (e.g., 0.999), this indicates still a 

problem. In psychology, that outcome is not realistic because it would mean that the 

relevant manifest variable would have a reliability of at least 0.999. Furthermore, the 

intervention (the communality being set at 0.999) does not eliminate the fact that there 

is something strange about the relationship between model and data. The chi-square 

statistic no longer has a chi-squared distribution with the specified degrees of freedom, 

but its distribution is a mix of chi-square distributions with different degrees of 

freedom (a so-called chi-bar-square distribution, see Dykstra, 1991). Consequently, the 

p-value in the output is no longer correct. Therefore, these cases should still be called 

Heywood cases – even if the reported communality is not greater than 1. In summary, 

you have a Heywood case if the above warning is given and the final communality is 
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0.999 or 1. In a Heywood case, the p-value reported in SPSS cannot be trusted, and 

when it comes to psychology, the factor pattern can not be trusted either.  

Sometimes it helps to specify a different number of factors. Both a too large and a 

too small number of factors can lead to a Heywood case. Also, a small N can lead to a 

Heywood case, and there are several other possible causes (Kolenikov & Bulbs, 2012).  

3.8.4 Correlation Matrix is not positive definite               
A correlation matrix will always have certain properties such as symmetry, 1’s on the 

diagonal, and so on. These properties can be summarised under the heading ‘positive 

semi-definite’. If the correlations are, moreover, such that there are no multiple 

correlations of 1 (i.e., no single variable is 100% predictable from other variables by 

multiple linear regression), then the correlation matrixis 'positive definite'. So  

- each correlation matrix is positive semi-definite;  

- any natural correlation matrix is positive definite.  

The exact meaning of these terms is not important here. What is important is that factor 

analysis is possible only if the correlation matrix is positive definite. But that would 

naturally almost always happen. How can it still go wrong?  

This may be the case if there are missing observations and the correlations are 

computed with the pairwise option. For example, suppose a person has answers to 

questions 1 and 2, but not to question 3. Then that person can in theory still be used to 

calculate the correlation between questions 1 and 2, but not to compute the correlation 

between questions 1 and 3. Consequently, the correlation between questions 1 and 2 is 

computed in a different group than the correlation between questions 1 and 3. In such 

cases it is possible that the correlation matrix is not positive semi-definite, and then no 

factor analysis is possible. To avoid this, use list wise deletion of missing values under 

the Options button. This means that once a subject has a missing observation, that 

subject is not used throughout the analysis. It is important that each participant answers 

the questionnaire completely if this option is being used. If someone omits one answer, 

all answers of this person are useless.  

- If there are fewer subjects than variables, the correlation matrix is positive 

semi-definite, but not positive definite.  

- If the data consist of a correlation matrix, and you analyse it as if it's the raw 

data matrix (so first calculate the correlations of the correlations), then you 

should not expect anything meaningful in the output.  

3.8.5 Hessian is not positive definite               
The Hessian is a matrix which is used in order to optimize estimates, similar to a 

second derivative. If it is not positive definite, the program is unable to optimize the 

estimates. This is what happens with the correlation matrix in Table 3.9.  
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Table 3.9  

  v1  v2  v3  v4  

v1  1  0  0  0  

v2  0  1  0  0  

v3  0  0  1  .10  

v4  0  0  .10  1  

  

This correlation matrix is about the simplest one that one can think of, but if you 

conduct a ML factor analysis with one factor, you get the warning that the Hessian is 

not positive definite. It won’t help to take more factors, because if you do an analysis 

with two factors, then the number of degrees of freedom is negative and the Hessian is 

still not positive definite. Sometimes it helps to choose a different analysis, such as 

PCA instead of ML. 

 



 

4 Conducting and reporting a 

reliability analysis  
 
 

4.1 Background               

In scale construction one will initially conduct a factor analysis the items, and some 

items may be deleted. Furthermore, the set of remaining items will be partitioned into 

subsets, called scales, each corresponding to a factor. After this you have to analyse 

each scale separately for the question whether its reliability is large enough.  

In a reliability analysis you compute primarily an internal consistency reliability, 

and you judge whether it is high enough. An internal consistency reliability indicates 

the reliability of the total score. More specifically, it provides a lower bound for that 

reliability. This increases with the number of items and the correlations between items. 

In addition you have to study for each item whether it has a positive impact on the 

reliability. Items with a negative contribution to the internal consistency reliability are 

removed from the scale.  

4.2 Learning goals  

After studying this chapter, you can use a reliability analysis to 

- examine which items should be removed from the scale,  

- determine the internal consistency reliability of the resulting scale, and  

- judge whether the reliability is large enough.  

Furthermore you can report this in a concise report.   

4.3 Basic report a reliability analysis  

The usual set-up of a basic report is not convenient here because many steps would be 

rather trivial. Actually, the analysis just too simple . Nevertheless, this chapter 

follows the pattern of a basic report, to be consistent. But we include only the relevant 

parts:  

-               Design  

-               Analysis                

-               Estimates  

-               Decisions  

-               Interpretation  
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4.4 Running example               

As an example we use the research of Diesfeldt (1997) to the Depression List, 

described in section 2.4.  

4.5 Design               

In the design you specifiy which items belong to the scale for which the internal 

consistency reliability has to be calculated. Within a process of scale construction this 

scale is to be selected as a group of items that is unidimensional or unifactorial. If a 

preceding factor analysis concluded that there were several factors, one should conduct 

a reliability analysis separately for each factor. In each of these reliability analyses only 

items belonging to the same factor must be used. Those are the items that load highly 

on this factor and not on any other factor. Similarly, if IRT analysis concluded that 

there are several dimensions, one should conduct the reliability analysis for subsets of 

items that are unidimensional. 

If the factor analysis had a factor that was not interpretable or that had only a small 

number of items, then one might decide to exclude this factor and its items from the 

measuring instrument all together.  For such factors a reliability analysis is not needed.  

Explanation  

In a reliability analysis you calculate the reliability of a sum score on multiple items. 

For each item sum score that you want to calculate later, you must do a reliability 

analysis. If you have multiple factors, then these consitute different scales, from which 

you will calculate different sum scores, and for which different reliability analyses are 

needed.  

The remark that you do not have to do a reliability analysis for items that are not 

proposed as scale, means that we are talking about items for which you will never 

calculate a sum score. It does not mean that you only need to avoid the word ‘scale’.  

You have to do reliability analysis on a unidimensional or unifactorial group of 

items, for two reasons. Firstly, because of construct validity, only scores of 

unidimensional scales (i.e., items with the same factor) should be used. Then reliability 

analysis should cover these sum scores. However, if the aim was solely criterion 

validity and content validity, that will invalidate this argument – and then you did not 

have to do a factor analysis to begin with. Second, it is assumed implicitly or explicitly 

in a reliability analysis that the items are unidimensional. Cronbach’s alpha is a good 

estimate for the reliability only if the items are essentially tau-equivalent, and this 

condition implies that the items satisfy a one-factor model. In a multidimensional set of 

items, reliability analysis can mean that you remove items one by one, until the result is 

about unidimensional. Actually this resembles a primitive kind of factor analysis, and 

then you better do it properly right away.  
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Example 1  

In the Depression List data of Diesfeldt, one of the factor analyses was followed by the 

conclusion that this list might be unifactorial if the items Eating, Sleeping and Friends 

are removed. If we analyse this further, then the design is:  

 

Items Depression List : Please t / m Future, excluding Eating, Sleeping 

and Friends  

 

Another option was to split the list into subscales. Then design is 

 

Items of Spirited : Future, Excited, ..., Old  

Items of Health : Strong, Healthy, Tired  

Items of Social: Visitors, Friends, Lonely, Eating  

 

This leads to three different reliability analyses: a reliability analysis for Spirits, a 

reliability analysis for Health, and reliability analysis for Social.  

In this chapter I will continue with a single analysis of the entire list. That's actually 

a bad choice, I just do this because this analyis includes effects that I want to discuss. 

The design will be:  

 

Items of Depression List : Please t / m Future  

Example 2  

See the example of the BPS, which consists of three subscales, Cognition, Mood and 

Contacts. Three different sum scores are calculated per person. Thus, three reliability 

analyses have to be conducted. Each subscale has an internal consistency reliability 

that should be estimated. In the design you specify which items belong to which 

subscale.  

4.6 Degree of control               

Does not apply. Or passive-observing, you might say.  

4.7 Aggregated data               

The aggregated data is comprised of the correlations between the items, and the 

standard deviation of each item, and N. This is sufficient to complete the analysis.  

Example  

In the running example, Diesfeldt provided only correlations. This is not sufficient to 

enable reproduction of the reliabibility analysis because the standard deviations are 
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lacking. In the following it will be assumed that the standard deviations are all equal to 

1.  

4.8 Analysis               

In this section you describe which kind of reliability coefficient is being used. We limit 

ourselves in this book to the internal consistency reliability. That is, by definition, the 

reliability of the total score, based on the statistical relationships between different 

items in a single test administration in a population of subjects. The most common 

estimate for internal consistency reliability is coefficient alpha. Alpha is used so 

frequently that it is often regarded as synonymous with internal consistency reliability. 

There are other, similar and sometimes better estimates, for example, based on the 

factor loadings. Especially Guttman's coefficient lambda 2 is a better estimate for 

internal consistency reliability than coefficient alpha, and it is equally easy to calculate 

in SPSS. The term internal-consistency reliability therefore has a broad and a narrow 

meaning. In the broad sense, it is the collective name for such coefficients as alpha and 

lambda 2, which estimate the reliability of the total score based on relationships 

between items. In the narrow sense, it is another name for coefficient alpha. Therefore, 

as soon as a specific coefficient is chosen, it should preferably be referred to by the 

specific name of that coefficient, and not only with the somewhat ambiguous term 

'internal consistency reliability'.  

In the following, for the sake of readability, the internal consistency reliability will 

often simply be designated by the term reliability. However, please be aware that there 

are other forms of reliability, such as test-retest reliability and inter-rater reliability. 

These are not treated in the present chapter.  

If the analysis is based on SPSS output, then lambda 2, and not alpha, may be the 

best estimate of reliability (at least as far as its population value is concerned). 

Nevertheless, in an article it is wise to also report alpha; not to estimate the reliability, 

but to prevent the manuscript being rejected by ignorant reviewers. Furthermore, it is 

definitely permitted to use other software than SPSS to obtain better estimates than 

lambda 2.  

Explanation  

Coefficient alpha was initially only calculated for dichotomous items, with a formula 

that became known as ‘KR-20’ (Formula 20 Kuder & Richardson, 1937). The general 

formula, which is also suitable for non-dichotomous items, was first formulated by 

Guttman (1945), who named this coefficient lambda 3 (3). Guttman also proved that 

this is a lower bound for reliability. The coefficient was studied in an article by 

Cronbach (1951), who called it coefficient alpha(). That name has since been 

customary. Cronbach showed that alpha equals the average of all split-half reliability 

coefficients of the test.  
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Although alpha is often called the internal consistency reliability, Cronbach (1951) 

already pointed out that ‘internal consistency’ is not a good interpretation of alpha 

because alpha increases with the number of items. That is, you may call it ‘internal 

consistency reliability’ but not ‘internal consistency’, just like Amsterdam is 

synonymous with ‘Dutch capital’ but not with ‘Dutch’.  Apparently, it is necessary to 

repeat this every decade (Novick & Lewis, 1967; Green, Lissitz & Mulaik, 1977 

Hattie, 1985; Cortina, 1993; Schmitt, 1996; Drenth & Sijtsma, 2006; Sijtsma, 2009). 

Nevertheless, the name internal consistency reliability will probably stay, so that each 

generation psychologists is confused again.  

In order to clarify the preceding paragraph: ‘internal consistency’ means that the 

items fit to each other, and measure the same. This means they are unidimensional (or 

unifactorial). The item’s dimensionality affects alpha, but alpha also depends heavily 

on the number of items. The latter has nothing to do with the dimensionality. Check the 

following examples, in which it is assumed for convenience that the items all have 

equal variances.  

- Suppose the items depend on five uncorrelated factors and that each item loads 

0.9 on one factor and 0 on the other factors. The item set thus can be partitioned 

into five uncorrelated subscales. If each subscale contains the same number of 

items, then with 100 items the alpha for the total scale equals 0.95. For 

someone who erroneously believes that alpha measures the internal 

consistency, this high value of alpha would suggest that the overall scale is 

internally consistent, whereas it actually falls apart into five uncorrelated 

factors.  

- Suppose that the correlations of all items is 0.1. The items then satisfy a one-

factor model. With five of such items will be alpha be equal to 0.36. For 

someone who erroneously believes that alpha measures the internal 

consistency, this low value suggests that the items are not internally consistent, 

whereas they actually are perfectly consistent.  

Given that the term 'internal consistency' is still prevalent, one wonders how many 

researchers are aware that this term suggests a misinterpretation. Of course it could be 

that they only use the words without attaching meaning to them, but then it would be 

better to call the coefficient ‘beautiful sunset’, as to avoid misinterpretations.  

That alpha equals the average of all possible split-half-reliabilities, can be 

interpreted in this way: If you randomly split the test into two equally long subtests, 

then the expected value of the split-half reliability equals alpha. This argument can be 

generalized and applies also when the test is split into more than two parts. Related to 

this is the following interpretation of alpha: if two equally long tests each are 

composed by taking a random sample of items from a large universe of allowed items, 

then their correlation is expected to be about equal to their alpha. This is an 

interpretation in terms of the generalizability theory (Cronbach, Rajaratnam & Gleser, 
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1963 Rajaratnam, Cronbach & Gleser, 1965; Cronbach, Gleser, Nanda and Rajaratnam, 

1972).  

Generalizability theory uses analysis of variance to attribute the variance of scores 

to multiple sources. In the simplest case, the sources are Item and Subject. While in 

classical test theory (Lord & Novick, 1968) the items are considered as a fixed factor,  

generalizability theory assumes they are a random factor. Despite this difference in 

interpretation, the same coefficient alpha will be used if there are no other factors 

besides the factors Subject and Item. Generalizability theory also provides formulas for 

designs with more factors, for example if there are different observers in addition to 

various items and subjects (see for example Veldhuijzen, Goldenbeld & Sanders, 

1993).  

Alpha is not necessarily equal to the reliability, but is only a lower bound for the 

reliability. Often, the reliability will be somewhat greater than alpha. Guttman (1945) 

derived six coefficients, named 1 through 6,  all of which are a lower bound for 

reliability. All of them can be calculated with SPSS. Of these, 3 is equal to alpha. 

Coefficient 2 is always at least as large as alpha (Guttman, 1945; Jackson & 

Agunwamba, 1977 Revelle & Zinbarg, 2009). In other words, if the reliability of the 

test is denoted by 𝜌𝑋, then 

 

3 2 X       

It follows that one should use lambda 2 rather than alpha as an estimator for reliability. 

After all, in the worst case, lambda 2 equals alpha, and in other cases lambda 2 is 

closer to the reliability. If only SPSS is being used, my advice is to use 2 for estimating 

the reliability.  

Revelle and Zinbarg (2009) analysed nine data sets where 4 is greater than 2, and 

often considerably larger. This would have been a reason to advise 4, except that this 

is a split-half reliability, so the outcome depends on how they divide the test into two 

halves. Revelle and Zinbarg used the maximum over all possible splits, but that value 

is not easy to obtain with SPSS.  

One may wonder why one would not simply use the maximum of all six 

coefficients. However, this is not recommended by any modern author, possibly 

because they are afraid of capitalization on chance (Ten Berge & Zegers, 1978, p. 579).  

Ten Berge and Zegers (1978) showed that there is an infinite series of increasingly 

better lower limits, of which alpha and lambda 2 are the first two (see also Ten Berge, 

Cutters & Zegers, 1981, Osburn, 2000). The other lambda coefficients of Guttman are, 

incidentally, not a part of that series. Jackson and Agunwamba (1977) and Woodhouse 

and Jackson (1977) developed a coefficient called the ‘greatest lower bound’ (glb) of 

reliability. This is always at least as large as any of the other coefficients discussed 
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above, and often larger. However, the sample estimator of the glb can have positive 

bias (Ten Berge & Sočan, 2004).  

Drenth and Sijtsma (2006; Sijtsma, 2009) are amazed that these improved lower 

limits are rarely used. They are usually higher than alpha, and you would think that 

psychologists are happy with that. Perhaps you think this is because these coefficients 

are not in SPSS is. That may be the reason why the glb is not used, but lambda 2  is 

actually in SPSS ! But it's not the default ... Sigh. Lambda 2 is better than alpha. That’s 

known for more than 60 years. It has been in SPSS for decades.  And yet the masses 

continue to report alpha. I sometimes dream of a program Shocking Statistical Program 

against Secondhanders which punishes users with an electric jolt if they use the default. 

While alpha can be studied with analysis of variance (where the items are a fixed or 

a random factor), alpha can also be studied with factor analysis (see, for example, 

Cronbach, 1951; Mulaik, 1965). Within a factor analysis, there are also other estimates 

for reliability possible (Cronbach, 1988; Ten Berge & Hofstee, 1999; Zinbarg, Revelle, 

Yovel & Li, 2005). Revelle and Zinbarg (2009) advocate the use of McDonald’s 

coefficient (omega). This is based on a factor analysis of the items. If there are k are 

items, and V is the sum of all elements in the correlation matrix (including diagonal), 

and H is the sum of all communalities, then the value of for standardized items can 

be calculated as follows:  

1
k H

V



   

According Revelle and Zinbarg this is a better estimate for the reliability than the glb. 

Coefficient can be calculated with the program psych in the free statistical package 

R (Revelle, 2008). A disadvantage of is that it depends on the number of factors that 

one assumes, and we have seen in previous chapters that this is not always something 

we quickly agree about. An advantage of is that, once one has the correct number of 

factors, it is a better estimate of the reliability than glb and the coefficients.  

To summarise: As an estimate of the internal consistency reliability one can best 

use provided that the number of factors is clear. Next best is the glb. Confined to 

SPSS, the best choice is . Those who want to publish shall also report , but 

preferably interpret it as ‘estimated generalizability coefficient’ rather than ‘estimated 

reliability’. It is formally correct to call the ‘internal consistency reliability’, but 

many readers might interpret it incorrectly.  

Running SPSS  

Analyze > Scale > Reliability Analysis  

              Move the variables with item scores into Items  

              Select at Model: Guttman  

              Click the Statistics button  
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                            Check under Descriptives for: Scale if item deleted  

                            Check under Inter-item: Correlations  

                            Check under Intraclass correlation coefficient  

                                          Model: Two-way mixed (default)  

                                          Type: Consistency (default)  

                            Continue  

              OK  

If the data contains the correlation matrix instead of the raw data, the analysis must be 

done from syntax. Click Paste instead of OK. After the / VARIABLES subcommand 

insert:  

 

              / MATRIX = IN (*)  

Example  

Diesfeldt used alpha as a measure of internal consistency reliability. If you run SPSS in 

the way described above, you get alpha and lambda 2 and a confidence interval for 

alpha.  

 

RELIABILITY  

/ VARIABLES = v1 to v15  

/ MATRIX = IN (*)  

/ FORMAT = NOLABELS  

/ SCALE (Guttman) = ALL / MODEL = Guttman  

/ STATISTICS = CORR  

/ SUMMARY = TOTAL  

/ ICC = MODEL (MIXED) TYPE (Consistency), CIN = 95 TESTVAL = 0 .   

4.9 Estimators               

If an estimated lower bound of the reliability, report lambda 2 when the analysis is 

performed with SPSS. In addition, alpha (lambda 3) should be reported. For each item, 

determine whether the reliability increases when the item is removed. For this purpose, 

alpha-if-item-deleted can be used. The values of alpha-if-item-deleted do not have to 

be reported, but it must be reported whether there are items whose removal would 

result in a larger alpha.  

Explanation  

The previous section advised to use lambda 2 for estimating the reliability and alpha 

was criticized severely. The main reason to report alpha too was the opportunistic 

consideration that your article is otherwise unlikely to be accepted by a top journal 

(Sijtsma, 2009), since these jounals are quite conservative in statistical matters.  
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The values of alpha-if-item-deleted can be compared to alpha in order to improve 

the scale (see section 4.11 Decision). In theory, one might be able to do better with 

lambda-if-item-deleted, but these values are not provided by SPSS. That is another 

reason why one could report alpha despite all the criticism. Alternatively, one could of 

course take the trouble to do a separate analysis for each item, and still get the values 

of lambda-if-item-deleted. But that take may take up to fifteen minutes, and 

psychology is not important enough for that, right?  

Example  

The SPSS output is presented in Table 4.1 to 4.3. The correlation matrix is omitted by 

me because it is already shown in table 2.3.  

Table 4.1  

Reliability Statistics 

Lambda 1 .771 

2 .832 

3 .826 

4 .796 

5 .811 

6 .848 

N of Items 15 

 

Table 4.2  

Item-Total Statistics 

 

Scale Mean 

if Item 

Deleted 

Scale 

Variance if 

Item Deleted 

Corrected Item-

Total Correlation 

Squared 

Multiple 

Correlation 

Cronbach's 

Alpha if 

Item 

Deleted 

Satisfied (-) .00 56.00 .563 .415 .808 

Sleeping (-) .00 59.62 .311 .248 .824 

Eating (-) .00 60.46 .255 .229 .828 

Healthy (-) .00 56.68 .514 .406 .811 

Tired .00 58.94 .357 .244 .821 

Old .00 57.52 .455 .298 .815 

Lonely .00 56.58 .521 .412 .810 
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Friends (-) .00 60.00 .285 .185 .826 

Visitors (-) .00 57.76 .438 .397 .816 

Gloomy .00 55.12 .626 .464 .803 

Boredom .00 58.22 .406 .265 .818 

Excited (-) .00 54.98 .637 .498 .803 

Helpless .00 58.78 .368 .207 .820 

Weak .00 58.36 .397 .417 .819 

Future (-) .00 56.44 .531 .383 .810 

 

Table 3.4  

Intraclass Correlation Coefficient 

 

Intraclass 

Correlationb 

95% Confidence Interval F Test with True Value 0 

Lower Bound Upper Bound Value df1 df2 Sig 

Single 

Measures 
.240a .199 .290 5.739 196 2744 .000 

Average 

Measures 
.826c .788 .859 5.739 196 2744 .000 

Two-way mixed effects model where people effects are random and measures effects are fixed. 

a. The estimator is the same, whether the interaction effect is present or not. 

b. Type C intraclass correlation coefficients using a consistency definition. The between-measure 

variance is excluded from the denominator variance. 

c. This estimate is computed assuming the interaction effect is absent, because it is not estimable 

otherwise. 

 
Coefficient alpha is given under Lambda 3, and it is equal to 0.826 here. A better 

estimate for the reliability is Lambda 2, which has the value 0.832 here. The reliability 

is therefore estimated to be at least 0.832. The values of alpha, if one item is removed, 

are in the column Alpha if Item Deleted. The Eating item has alpha-if-item-deleted 

0.828, which is slightly larger than the value of alpha. Removing this item would 

therefore lead to a larger value of alpha. In section 4.11 Decision, this is further 

discussed.  

For completeness, we also consider the value of . For this we first have do a factor 

analysis. If one factor is extracted, you get from the communalities H = 3.874. From 

the correlation matrix we obtain V = 65.42. The number of items is k = 15. If you enter 
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this into the formula, you get: = 1 - (15-3.874) / 65.42 = 0.830. With four factors and 

ML extraction, you get = 0.875. With nine factors you get  = 0.918, but that is a bit 

silly, because no one seriously claimed that there are nine factors in these data. 

Nevertheless this makes clear that you must first know the number of factors before 

you can calculate .  

4.10 Testing               

It is not customary to conduct a statistical significance test on the reliability. The 

reliability is usually so high that it is significantly greater than 0. Moreover, this is not 

an interesting null hypothesis, since the reliability has to be much higher than 0.  

However, it may be relevant to report a confidence interval for alpha. SPSS does 

not provide confidence intervals if you ask only for alpha. But the Reliability 

procedure can also calculate intraclass correlations, and if you take the two-way mixed 

model and consistency type, then the outcome reported for the average rater is equal to 

alpha. And for that intraclass correlation, a confidence interval will be calculated. 

Incidentally, this is based on the outdated method of Kristof (1963) and Feldt (1965) 

(see McGraw & Wong, 1996), and there are now better methods (Van Zyl, Neudecker 

& Nel, 2000; Kistner & Muller, 2004; Maydeu-Olivares, Coffman & Hartmann, 2007).  

Example  

The value of alpha is 0.826, and the confidence interval ranges from 0.788 to 0.859. 

Note that alpha itself has again an unreliability. The latter unreliability mainly depends 

on the number of people, while the size of alpha depends mainly on the number of 

items and their correlations. The fact that one can easily calculate a confidence interval 

for alpha, might be a third reason to report alpha, and not only lambda 2.  

4.11 Decision               

In this section of the basic report you describe which items need to be removed from 

the scale (or vice-versa, which are retained in the scale). Those are the items that 

reduce the reliability, so that removal actually leads to an increase of reliability. Items 

with negative correlations with other items are also eligible to be removed, but usually 

these items will also have a negative effect on reliability.  

After removal of the item, the reliability analysis must be done again with the 

remaining items, because it is possible that subsequently another item shows a negative 

contribution to the reliability, even if that item did not have negative contribution 

initially. The reverse is also possible. Therefore it is advisable to remove one item at a 

time, and redo the analysis after each item removal. 

If no items with negative contribution are left, then a reliability estimate for the 

resulting scale has to be reported. 
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Explanation  

If the items are one-factorial and have equal loadings, they can not reduce the 

reliability. In other cases, it is possible that an item has a negative effect on the 

reliability and that removing the item increases reliability. Take the extreme example 

of a situation where you have an intelligence test with a reliability of .95. And now you 

add this item to it: the number of eyes that the tested person throws with a dice. This 

item has factor loading 0, but it would not violate the one-factor model. Nevertheless, it 

is intuively clear that adding this item will reduce the reliability of the total score.  

The instruction to remove items with a negative contribution to alpha, seems quite 

logical, yet it is controversial. After all, alpha is generally not equal to the reliability 

and maximising alpha can therefore lead to a decrease in reliability (Raykov, 2007) and 

criterion validity (Raykov, 2008). Furthermore, if one wants to maximise alpha it 

would be more apropriate to weigh the items differentially in the sum score, and then 

items with a negative contribution to alpha may still positively contribute to the 

reliability of the weighted sum score.    

Example  

We had already found that alpha is 0.826. If you look in the output in the column Alpha 

if item deleted, you see that after removal of item v3 (Eating), the alpha would increase 

from the current 0.826 to 0.828. This item should therefore be removed. You might 

wonder whether such a small increase is significant. Probably not, but on the other 

hand keeping the item is certainly not a significant improvement, so why would one 

keep the item? In addition, this item also has a negative correlation (-0.12), with 

another item.  

Many people seem to have some emotional resistance to the removal of items. They 

seem to think "the more items the better”. If it is not quite certain that the item should 

be removed, they want to keep it. But then one confuses ends and means. The reason 

that having more items is better in general, is that it increases reliability provided that 

the items are good. But that last assumption is under discussion here. Better create a 

short, pure scale than a long scale that can be disputed.  

If v3 is removed, and we re-do the analysis without this item, then it turns out that 

v8 (Friends) has a negative contribution. And if we remove that one too, then v2 

(Sleeping) contributes negatively. After removal of that one, there are no more items 

with a negative contribution. Then alpha is 0.830, and lambda 2 is 0.835 (you cannot 

infer that from the output given here).  

The conclusion should thus be that (if the scale is not split into sub-scales) the items 

Eating, Friends and Sleeping should be removed. These are also precisely the items 

with the lowest loadings in the factor analysis with one factor. That's no coincidence. A 

low factor loading means that the item correlates lowly with the factor, so it has a low 

reliability. If the item is too unreliable, then it adds more to the measurement errors 

than to true scores, and thus reduces the reliability of the total. Or, even worse, the item 
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measures a different factor and thus provides a systematic bias when you use it 

anyway. To illustrate this effect in this chapter I made the wrong choice of using all 

items, although the factor analysis indicated that we had different scales. Figure 4.1 

shows a plot of alpha-if-item-deleted on the factor loadings. As you can see: potayto 

potahto.  

  

  

Figure 4.1  

4.12 Interpretation               

in this section of the basic report you assess whether the reliability of the resulting 

scale is high enough. There are no objective limits. It depends on the application 

(Cortina, 1993; Schmitt, 1996). If the test scores are used for decisions about 

individuals a higher reliability required than if the test is only used to establish in group 

research whether the test correlates positively with another variable. Because a low 

reliability means that each score contains a lot of random noise, and such noise can 

change the decisions about individuals but it cannot change the sign of a correlation.  

Moreover, the boundary in decisions on individuals depends on how important the 

decision is. The higher the cost of a wrong decision, the higher the reliability should 

be. In a national final mathematics exam for thousands of high school pupils we 

demand more of the reliabiblity than in an exam for 50 students at a university. The 

demands of the university exam to the students  hopefully exceed the requirements of 

the school exam, but the standards we set for the reliability of the university exam are 
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lower. Because firstly, the number of students is smaller and secondly for each student 

the cost of a wrong decision is smaller. This is so because if the student drops wrongly, 

the student will not have to retake the whole year (unlike the school pupil), and if the 

student erroneously succeeds, there are many other examinations to come where things 

can be put right.  

In sum, it depends on how important the decisions are and how the decisions are 

influenced by unreliability. (That is, I suppose, the reason why during the World Cup 

nobody ever analyses the reliability of soccer games: it is completely unimportant). 

Most authors in the field of reliability refrain wisely from identifying any numeric 

boundary.  

Explanation  

Psychometricians have gone to great lengths to define and estimate the reliability 

coefficient, and professional organisations like the APA require that reliability 

coefficients be reported for every psychological test, but now we find out that nobody 

really knows how big it should be. Different views are discussed below.  

1               The classic standard  

While most authors avoid to specify any numeric border, one person (Nunnally, 1978; 

Nunnally & Bernstein, 1994) wrote down which value of alpha one should require. 

That bound was promptly embraced by a subpopulation psychologists as salvation 

from their suffering, because now they can at least refer to someone when they claim 

that their tests alpha is high enough. According to some, this  benchmark is 0.70, while 

according to others, this benchmark is 0.80 (Clark & Watson, 1995; Duhachek & 

Iacobucci, 2003). And they refer to the same author. Sigh. The original text of 

Nunnally (1978) is less certain:  

In the early stages of research on predictor tests or hypothesized measures of a 

construct, one saves time and energy by working with instruments that have 

only modest reliability, for which purpose reliabilities of .70 or higher will 

suffice. (…) For basic research, it can be argued that increasing reliabilities 

much beyond .80 is often wasteful of time and funds. (…) In those applied 

settings where important decisions are made with respect to specific test 

scores, a reliability of .90 is the minimum that should be tolerated, and a 

reliability of .95 should be considered the desirable standard. (Nunnally, 1978, 

pp. 245-246)  

Thus:  

0.70 is acceptable in preliminary research               

0.80 is good enough for group research                

0.90 is the minimum required for individual decisions.  

Group research has lower reliability requirements than individual decisions because in 

group research one is only interested in the correlation or the effect size. This will now 
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be explained in more detail. Two formulas are important: the attenuation formula and 

the Spearman-Brown formula.  

The attenuation formula (Spearman, 1904b; see also Lord & Novick, 1968; 

Borsboom & Mellenbergh, 2002, Charles, 2005) shows how correlations are influenced 

by reliabilities. Suppose the manifest  variables are X and Y , and their true scores are 

( )T X and ( )T Y , and their reliabilities are X  and Y . The correlation of the true 

scores can be denoted with 
( ) ( )T X T Y and the correlation of the observed scores with 

XY . One should be aware of the following: we would like to know the correlation 

between the true scores, but it is unknown. If we calculate the correlation based on a 

sample of data, we get an estimate for the correlation between the observed scores. The 

relationship between these two correlations is given by the so-called attenuation 

formula:  

( ) ( )XY T X T Y X Y     

From this formula it appears that the correlation between the observed scores is pushed 

down (attenuated) by the presence of the test’s unreliability. For example : if the 

correlation between the true scores is .90, and the two tests have a reliability of .50, 

then the correlation between the observed scores will be only .45; much smaller than 

the true score correlation. Therefore, it is undesirable to use very unreliable tests in 

group research on correlations. The same formula, however, also shows that when the 

observed variable Y has a reliability of .80, to further increase the reliability will have 

a relatively small effect on the correlation.  

An analogous formula is valid for the effect size in a study in two groups in which a 

t-test is being used. If the observed value of Cohen's d in the population is denoted by 

Y , and the value of Cohen's d for the true scores of the dependent variable is denoted 

by 
( )T Y , then the relationship between them is (Cohen, 1988, p. 536):  

( )Y T Y Y    

As a result, the power of the t-test  will be limited if the dependent variable has  low 

reliability. Here too, increasing the reliability above .80 has a relatively small effect on 

the effect size. A similar formula is valid for one-factor ANOVA with a fixed factor 

(Feldt, 2011).  

The Spearman-Brown formula shows how the reliability of a test increases if the 

test is lengthened (i.e., if the number of items increases) (Brown, 1910; Spearman, 

1910; see also Lord & Novick, 1968). If the items are parallel, and if the current 

reliability of the test is  , then after lengthening the test by a factor k   (for example, a 

test of 10 items is extended to a test of k * 10 items), the reliability is equal to :  
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k

k

k







 
 

A plot of this function shows that lengthening the test increases reliability, but the 

effect diminishes as the reliability gets closer to 1.  

The attenuation formula and the Spearman-Brown formula together lead to the 

classic standard: lengthening the test has a positive but diminishing effect on the 

reliability (Spearman-Brown), while raising the reliability above .80 has a relatively 

small effect on the correlation and effect size (attenuation), so increasing reliability 

above .80 would be a waste of time and money (Nunnally, 1978).  

2               Typical values of reliabilities  

Frisbie (1988) argues that most published and standardized tests have a reliability of 

0.85 to 0.95, and that those tests are usually evaluated as very acceptable, and that the 

lower limit for use in individual decisions should therefore be 0.85 when the decision is 

based on only that test score. Well, that's like the argument "p < 0.05 is a good bound 

to reject the null hypothesis, because almost everyone uses that bound” – a fallacy. 

Anyway, Frisbie says that for the group decisions the "generally accepted” lower 

bound is 0.65, and that paper and pencil tests of teachers have an average reliability of 

0.50.  

3               Optimizing the power given budget research group  

The classic standard that increasing the reliability above .80 is a waste of time and 

money is a premature conclusion, because these costs vary by domain. Some 

experiments take several minutes, others take several decades. The classic standard 

ignores those differences.  

Suppose we do an experiment with two groups, and that each subject spendsb
minutes undergoing the experimental conditions, and that it takes a further c minutes 

to take the test that measures the dependent variable. Suppose the test will be 

lengthened by a factor k to make it more reliable. In one experiment with n subjects, 

the total time you have pay the subjects will be ( )n b kc . Ellis (2013b) shows that 

under this condition, based on the attenuation formula and the Spearman-Brown 

formula and a result of Allison et al. (1997), the power of the t-test is maximized at a 

given budget if the reliability of the test is equal to 

 

efficient

b

b c
 


 

For example : if the experimental manipulation lasts 50 minutes, and the test takes 10 

minutes, then the efficient value of the reliability is 50 / (50 + 10) = .83. This is the best 
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value of the reliability, the value that you have to achieve if you want to maximise the 

power of the t-test with a given budget. A higher reliability is inefficient: one would 

spend too much in the measurement while the power would increase more if the same 

money is spent to a larger number of participants. A lower reliability is inefficient too: 

it uses too many subjects, while it would be better to spend more time on 

measurements.  

In this example, the efficient reliability is .83. However, if the experiment takes 180 

minutes, with on top that a test session of 10 minutes, then the efficient value of the 

reliability is not .83, but 180 / (180 + 10) = .95. According to this analysis it is not 

possible to give a single value like 0.70 or 0.80 as standard for the reliability. It 

depends on how time consuming the experiment is, and how much time the test takes. 

In a long and expensive experiment it is worth pursuing a high reliability, perhaps .95. 

Conversely, if the test administration takes a relatively long time, it is better to accept a 

somewhat lower reliability, perhaps .60.  

4               The probability of a wrong decision about an individual  

The idea that the reliability should be higher if the test is being used for individual 

decisions is generally accepted, but it is illogical because the concept of reliability has 

no meaning for a single person. Reliability is defined as the proportion of true score 

variance, but for that one person the true score variance is equal to 0 and thus the 

reliability is 0 too. Another argument is that one person is a member of many different 

populations (e.g., I'm a Dutch man, but also a Gelderlander, and a restaurant customer, 

and coffee drinker) and in each population the reliability of the test is different, so 

which of those reliabilities would one have to use for that person? In deciding on 

individuals it is more logical to calculate a confidence interval for the true score, or to 

calculate the probability of a wrong decision (Swaminathan, Hambleton & Algina, 

1974, Charter & Feldt, 2001).  

A possible decision that one could study is whether a subject is above or below 

average (Veldhuijzen, Goldenbeld & Sanders, 1993). If the true score of the subject is 

above average and the observed score is above average, then the subject is correctly 

classified by the observed score. If the true scores and error scores are bivariate 

normally distributed, it is possible to derive the probability of correct classification 

from the reliability. These probabilities are shown in Table 4. 4.  

Table 4.4  

Reliability  

Probability of correct 

classification  

0.50  0.75  

0.60  0.78  

0.70  0.81  

0.80  0.85  
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0.90  0.90  

0.95  0.93  

0.97  0.94  

0.98  0.96  

 

A similar question is : when two subjects are randomly drawn from the population, 

what is the probability that their observed scores have the same rank order as their true 

scores ? If true scores and error scores have a bivariate normal distribution, then the 

probabilities are the same as those in the right column of Table 4.4. The table shows :  

- with a reliability of 0.50, the probability of correct classification is still 75%, 

where one should note that this probability starts at 50% if the test has 

reliability 0;  

-  if the desired error probability is 5%, then the reliability should be between 

0.97 and 0.98.  

Since it is commonly required that error rates may be at most 5%, one could argue that 

the reliability of a test should be at least 0.97 if one uses the observed score to compare 

an individual with the average or with another subject. Of course the 5% limit is just as 

well arbitrary ...  

5               The standard error of measurement  

The standard error or standard error of measurement is calculated as follows:  

 

SEoM 1    

(The usual abbreviation is SEM, but this abbreviation is already used in this book for 

structural equations models). Here, is the standard deviation of the test scores in the 

population, and is the reliability of the test scores in the population. The SEoM is 

equal to the standard deviation of the errors in the test score. When the standard 

deviation for each person is equal and the errors are normally distributed, then, a 95%-

confidence interval for the true score of a person can be calculated:  

 

1.96 SEoMX    

Here, X is the test score of the person. For example, suppose that an examination takes 

place in which participants receive a grade between 1 and 10, and that these grades 

have a reliability of 0.682 and a standard deviation of 1.346. With this it can be 

calculated that the standard error is equal to 0.759. If anyone on this exam has grade 

5.5, the confidence interval for his or her true score ranges from  4.0 to 7.0. In other 

words, the grade that the person deserves (the true score), might be 1.5 marks higher or 
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lower than the grade that the person gets. If you find this error too big, then the exam 

has to be made more reliable.  

The advantage of this calculation is that it can be applied to individuals. One 

limitation is that the assumptions made – the errors are normally distributed with equal 

variance for each person – are often not true, as we will see in the chapter on IRT.  

A second limitation is that the problem is thus shifted to the question as to what is 

an acceptable margin of error. With exam results you have perhaps an intuition about 

this, but can you imagine what would be a good margin of error for the scores on the 

Depression List in Diesfeldt’s research? And even with exam results, you might 

wonder whether the intuition you have is so reasonable. The foregoing example, 

wherein the confidence interval for one’s grade ranges from 4 to 7, is based on real 

data. Did you expect such a wide range? Now, it is of course easy to scream that tests 

should be much more reliable. But in part 2B of this book there was a problem on a 

multiple choice exam of four possible answers per question, in which they wanted to 

distinguish reliably between 5 and 5.5. This showed the exam would need 2562 

questions to achieve this. Assuming you answer an exam question every minute, the 

examination would take 42.7 hours...  

Example  

After removing the three items Eating, Friends and Sleeping the internal consistency 

reliability of the Depression List is 0.830. According to the classic standard this is high 

enough to use the scale in group research, but not high enough to allow individual 

decisions based solely on the scale score. If one compares any two individuals on the 

total score, then there is a probability of 10% to 15% that the wrong conclusion is 

drawn on who has the highest true score. If test sessions last 10 minutes, the test would 

be efficient for experiments of about an hour (including test administration). For longer 

experiments, a higher reliability would be more efficient.   

4.13 Summary               

Design  

Items of Depression List : Please through Future.  

Aggregated data  

In the running example Diesfeldt provided only correlations.  

Analysis  

Diesfeldt used alpha as a measure of internal consistency reliability. This is normal, but 

it would have been better to use lambda 2.  
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Estimators  

After removal of the items with a negative contribution to alpha, alpha is 0.830, and 

lambda 2 is 0.835. The estimated internal consistency reliability was 0.835.  

Decision  

The items Eating, Friends and Sleeping should be removed from the scale.  

Interpretation  

The reliability of the resulting scale is high enough for group research in accordance 

with the rules of thumb of Nunnally (1978). 

4.14 Concise Report               

An analysis of the internal consistency reliability of the Depression List showed that 

the items Eating, Friends and Sleeping had a negative contribution to alpha. These 

items were therefore removed from the scale. The estimated reliability of the resultant 

scale, consisting of the rest of the items, was lambda 2 = 0.835, while alpha = 0.830. 

According to the rules of thumb of Nunnally (1978) that is high enough to use the scale 

in group research.  

 

 

 

 

 

 

 



 

5 Conducting and reporting a Rasch 

analysis  
 
 

5.1 Background  

  
Using factor analysis in the construction of tests has several drawbacks. The problem is 

that items usually have a small number of response categories, which is not compatible 

with the assumptions of factor analysis. There are alternative forms of factor analysis 
that are suitable for such data (Christoffersson, 1975, Muthén, 1978, 1984, 

Bartholomew, 1980). An alternative analysis method is based on the Item Response 

Theory (IRT ). This is a collection of models for items with a limited number of 

answer alternatives (see Sijtsma & Junker, 2006, for an overview).  
The Rasch model (Rasch, 1960) is the simplest IRT model, and will be introduced 

in this chapter. Because of its simplicity, the Rasch model has a number of attractive 

features that make the estimation and testing of the model relatively easy. However, 

that simplicity also means that the model is very restrictive. In practice, the model 

rarely holds for psychological tests. Nevertheless, the model is important, because it 

describes how the ideal test works. 
The following first describes how an Rasch analysis is done. A later chapter 

discusses the important theoretical properties of the Rasch model.  

5.2 Learning goals  

After studying this chapter you can  

  

- indicate the drawbacks of applying factor analysis to items;  

- explain and motivate the assumptions of the Rasch model;  

- describe the characteristics of the IRFs of the Rasch model;  

- on the basis of given item parameters, sketch the IRFs and TRF in a Rasch 

model;  

- assess which estimation method ( CML , MML , WML , EAP ) can best be 

used in a given case;  

- schematically indicate how the variance of the person parameter depends on the 

sum score;  

- on the basis of the results of the R0, R1 and R2 tests, draw the correct conclusion 

about the unidimensionality of a set of items;  
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- write a concise report based on RSP output;  

- indicate the similarities and differences between the Rasch model and the 3PL 
model, in particular as regards their applicability to multiple choice tests.   

5.3 The problem of factor analysis  

The use of factor analysis for analysing items in a test has a number of drawbacks:  

  

- It is assumed that there is a linear relationship between the factor and the 

manifest variables. In practice, item scores are almost always bounded from 

above and below. The assumption of linearity is then implausible.  

- Because of these bottom and ceiling effects, items with different averages 

usually also have different skewnesses. This limits their correlations, which 
leads to additional factors (McDonald & Ahlawat, 1974).  

- Statistical tests usually assume that the manifest variables are normally 

distributed, but items usually have a limited number of categories, so this 

assumption is violated.  

- By assuming a normal distribution for the manifest variables you essentially 

assume that you can already measure something, but that can be doubted 

(Fischer, 1974). The elementary observations in test data are not numbers, but 

responses from persons.  

  
There are nonlinear factor analyses (McDonald, 1967; Yalcin & Amemiya, 2001), but 

they are not widely used in psychology. There are also tests for linear factor analysis 
that assume no normal distribution (Browne, 1984 ), and these are not used much in 

psychology either. Some methods of nonlinear, non-normal factor analysis can be seen 

as a form of IRT analysis (Muthén, 1978, 1984; Knol & Berger, 1991).  

Explanation  
If we assume a one-factor model for the items, and if we would know the factor scores, 

we could consider a scatter plot of, for example, four items. We could then create a plot 

that indicates how the item score depends on the score on the common factor. That 

should be a linear relationship for each item. The following figure contains an example 

in which the scores of 500 people were simulated according to a one- factor model. 
The syntax used is  

  
compute g = rv.normal (0,1).  

compute x1 = 0 + g + rv.normal (0,1).  

compute x2 = 2 + g + rv.normal (0,1).  

compute x3 = 3 + g + rv.normal (0,1).  

compute x4 = 5 + g + rv.normal (0,1).  
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execute.  

  
Figure 5.1 shows a plot with the factor scores g on the horizontal axis and the item 

scores x1 and x4 on the vertical axis. The scores of x2 and x3 have been omitted for 

greater clarity.  

 

 
Figure 5.1  

If we test a one-factor model with ML extraction on these data, then we get 2(2) = 

1.555, p = .460. In this analysis , therefore, we arrive at what we have put into it: one 
factor.  

But suppose now that the researcher submits the questionnaire to a sample of 

subjects, where it is not allowed to give answers lower than 0 or higher than 5. The 

answers will then be truncated (assuming that the test subjects do not change their 

answers more than necessary). The plot then becomes as in figure 5.2.  
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Figure 5.2  

The truncation mainly concerns items 1 and 2 at the bottom and items 3 and 4 at the 

top. As a result, items 1 and 2 have become right-skewed, while items 3 and 4 have 

become left-skewed. But then it is impossible that they still have a positive linear 

relationship with each other. And thus they can no longer have a linear relationship 

with the same underlying factor. The trimming changes the pattern of correlations, and 

if we now do the same factor analysis on these data, we get 2(2) = 8.775, p = .012. In 

this case we do not get what we put into it. We started with a one-factor model, but 

after truncation of the scores this is no longer correct. The researcher’s conclusion 

would be that there is a second factor. In terms of content, however, nothing has 

changed, and the scores still depend only on the latent variable g . The researcher will 

therefore never be able to interpret his second factor properly. The second factor is 

artificial.  
If the researcher tries to interpret the second factor, then it is possible to say what 

will happen. In this example, let’s do a PCA because there are not enough items for 

ML extraction. The loadings are given in table 5.1 . The averages of the items are also 

shown there.  
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Table 5.1  

Item  Loading 
component 1  

Loading 
component 2  

Average score 

on item  

y1  .707  -.533  .5996  
y2  .802  -.129  2.0439  
y3  .784  .045  2,8298  
y4  .641  .694  3.7869  

  
You can see that the loadings on the second factor go hand in hand with the average. 
Item 1 has the lowest average and also the lowest loading on the second factor. Item 4 
has the largest average and also the highest loading. In the case of an intelligence test, 

the averages would reflect the difficulty of the items. The second factor is therefore 

called a difficulty factor (McDonald & Ahlawat, 1974). For empirical examples see, 

among others, Miecskowski et al. (1993) and Van der Ven and Ellis (2000).  

  
Summary: The truncation of data that satisfy a one-factor model, can lead to an 

artificial second factor, the difficulty factor.  

  
Data of items usually have an upper and lower bound, and can therefore be seen as 

truncated data. The conclusion is that factor analysis may not be such a good way to 

analyse such data. (That you still had to learn it, is because it is nonetheless used more 

frequently than IRT (Ten Holt, Van Duijn & Boomsma, 2010)).  

5.4 Basic concepts of IRT  

Item response theory assumes that the items have only a small number of response 

categories that do not necessarily indicate a quantity. The simplest IRT-models assume 

that each item has only two response categories. In this book only these simplest 

models will be discussed.  
Items with only two response categories are called dichotomous or binary. 

Examples are:  

- items where the answers are classified as ‘good’ or ‘wrong’;  

- items where only ‘yes’ or ‘no’ can be answered;  

- items where only ‘positive’ or ‘negative’ can be answered;  

- items that establish whether a certain behavior is ‘present’ or ‘absent’.  

  
That what is called the ‘common factor’ in factor analysis is called the latent trait in 
IRT. In both cases it is a latent (non-observable) variable. The only difference is that 

other assumptions are made about the relationship with the manifest variables.  
IRT models are often developed with cognitive tests in mind. The latent trait is 

therefore often called the mental ability of a person, or the difficulty of an item. This 
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will also be done in this text. This may give the impression that IRT models only apply 

to cognitive tests, but that is not true.  

5.5 Basic report of a Rasch analysis  

We stipulate that a basic report of a Rasch analysis consists of these sections: design, 

degree of control, hypothesis, aggregated data, analysis, estimating, testing, decision 

and interpretation. These parts will be discussed below.  

5.6 Running example  

As an example, we take items B01 to B12 of Raven’s Standard Progressive Matrices, 
administered in the Netherlands to a group of children aged 12 to 15 years. With these 

data a Rasch analysis was done by Van der Ven and Ellis (2000). The data can be 

found in the dataset Raven.sav.  

5.7 Design  

The design describes the items on which the analysis is done. A Rasch-analysis can be 

done on dichotomous (binary) items. Therefore, it should also be mentioned that the 

items are dichotomous. Sometimes a Rasch analysis is done on items with multiple 

response categories, which are then first recoded into two categories by combining 

some of the original categories. For example :  

  
                                          1 and 2  0;  
                                          3 and 4  1.  
  
In that case, should be mentioned that the items are dichotomized, and which 

transformation has been used.  

Explanation  
Usually all items of the test are administered to all persons in the sample. You could 

call that a within-subject design, but it is not customary to mention that. In some 

programs, other, more complex designs are possible, for example group A items 1 

through 15, and group B items 11 through 25. The groups then have only 5 out of 25 

items in common. If such an unusual design is used, it must be described.  

Example  
The items are the twelve items from subtest B of Raven’s Standard Progressive 

Matrices test. The items will be named B01 through B12 (dichotomous ).  

5.8 Degree of control  

The degree of control is usually passive-observing.  
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5.9 Hypothesis  

The hypothesis is that the items satisfy the Rasch model. The Rasch model has the 

following assumptions:  

  
Unidimensionality. Each person and each item is characterized by one number, 

which is called the person’s ability and the item difficulty, respectively.  
  
Double monotonicity. The probability that the person will give a correct 

answer to the item, increases with the ability of the person, and decreases with 

the difficulty of the item.  
  
Local independence. The probability that the person has an item correctly 

depends only on the person’s ability and, given this ability, not on the person’s 

other answers.  
  
Sufficiency of the sum scores. Each person’s sum score on the test contains all 

information about that person’s ability that is contained in the person’s 

response pattern. For each item the sum score on that item in the sample 

contains all information about the difficulty of the item that is present in the 

sample.  

  
From these assumptions, supplemented with some technical assumptions such as 

differentiability, it can be deduced that the probability to answer the item correctly 

depends on the ability and the difficulty in the following way (Fischer, 1974, 1995):  
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The Greek letters  (theta) and  (beta) represent this:  

  
 = the (mental) ability of the person  
 = the difficulty of the item.  

  
Implicitly, the function (x) = ex / (1 + ex) is used, with  -  being entered for x . The 

function  is called the logistic function. Because each item is characterised by 1 

parameter , the Rasch model is often also called the 1-parameter logistic model 
(1PL model).  
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Next, one can plot how the probability depends on the person’s ability and the item 

difficulty. If this is done for one item, this is called the Item Characteristic Curve 
(ICC); the associated function is called the Item Response Function (IRF). That last 

name is nowadays the most common .  

Explanation  

Unidimensionality  
The assumption that each person can be characterized by one number is comparable 

with the hypothesis of a one-factor model. This is a sensible hypothesis for scale 

analysis, because we want to investigate whether it is possible to characterize the 

person with one score (the test score).  
The assumption that each item is characterized by one number is comparable in 

factor analysis to the hypothesis that the items have the same factor loadings while they 

can have different averages.  

Because both people and items have only one parameter, we can represent them on 

a common scale, for example, like in figure 5.3.  

 
Figure 5.3  

Here, the ability of person B is greater than that of person A. The difficulty of item 2 is 

greater than that of item 1. Person B has a greater ability than the difficulty of item 1, 

but smaller than the difficulty of item 2.  

Double monotonicity  
The assumption (or rather requirement) that the probability of a correct answer 

increases the ability of the person is a reasonable assumption. We do not want a test 

where the smart people get lower scores than the stupid ones.  

The assumption that the probability of a correct answer decreases with the difficulty 

of the item, also seems obvious, but ... that is a bit more complicated. In many other 

IRT models this probability also depends on a second item characteristic, the 

discrimination.  

Local independence  

For example, if you need the correct answer to question 1 in order to answer question 2 

correctly, then the questions 1 and 2 are not locally independent. By contrast, if you 
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have an equal chance on question 2, whatever your answer to question 1 was, then 

questions 1 and 2 are locally independent.  

Sufficiency of the sum score  
Some psychologists say that they not only want to look at the total test score, but also 

to the answer pattern: which items did the person answer correctly? Or, in the case of a 

questionnaire, to which items did the person respond positively? I heard psychologists 

saying this with pride, because in their view it means that they use the test intelligently. 
In a test that satisfies the Rasch model, however, that strategy is just as intelligent as 

talking to the rabbit that you see in the clouds. Sufficiency of the sum score means that 

all relevant information is contained in the sum score. Considering the specific 

response pattern can only produce noise.  
Sufficiency of the sum score is a reasonable requirement, given the purpose of scale 

analysis. The sum score will be used to say something about the person’s ability, and 

then it is desirable for that sum score to be a good summary of all the information 

contained in the person’s answers. Sufficiency means that the sum score is a perfect 
summary of the empirical information about the person’s ability.  

The IRF  
Figure 5.4 shows how in the Rasch model the probability of a correct answer depends 

on the person’s ability. The ability is shown on the horizontal axis. Each item has its 

own curve, and that curve is called an ICC or IRF. Each of these curves is S-shaped. In 

this example, items 1 through 5 have respective difficulties  = -2, -1.5, 0, 1.5, and 2. 

The item difficulty is the ability at which the IRF of the item has a height of 0.5. The 

items have increasing difficulties in this example. In the figure this implies that the 

curve of an item is always shifted to the right in relation to the previous item.  

 

 
Figure 5.4  



112 Factor analysis and item analysis 

 

From this figure you can see the following:  

  
The IRFS are increasing.  
The IRFs are S-shaped.  
The IRFS go to 0 (minimum)  at the left and to 1 (maximum) at the right.  
The IRFs do not intersect each other.  
The IRFs are ‘parallel’ (the horizontal distance between two IRFs is 

constant).  

  
The difficulty of an item is the point above which the IRF assumes the value 0.50. So 

the harder the item, the further the IRF of that item is to the right. A person whose 

ability is the same as the difficulty of the item will have a 50% probability of making 

the item correctly. (The next two sections were not translated) 

5.10 Aggregate data  

5.11 Analysis  

5.12 Estimators  

The estimators consist of two tables:  

- for each item the estimated item parameter (the difficulty of the item), and  

- for each possible sum score the estimated person parameter (the ability of the 

person).  
If MML is used, the estimated mean and standard deviation of the normally distributed 

latent trait is also reported.  

Explanation  
The estimated person parameter does not have to be reported separately for each 

person, because it depends only on the sum score of the person. In practice, the 

estimated person parameters usually correlate about .99 with the sum score.  

Example  
The following tables contain the estimated item parameters and the estimated person 

parameters, respectively. In the case of person parameters, the standard deviation and 

frequency are also mentioned in this example, although this is not necessary according 

to the above rules.  

Table 5.4 CML estimates or item parameters  

Item  Difficulty (B)  

B03  -1.609  
B04  -1.459  
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B05  -.951  
B06  .380  
B07  .610  
B08  .892  
B09  .231  
B10  -.335  
B11  .579  
B12  1.662  

 

Table 5.5 Weighted ML estimation of ability  

Score  Parameter  St.Dev  Freq  

0  -3.579  1.606  0  
1  -2.271  .997  1  
2  -1.533  .831  0  
3  -.953  .755  3  
4  -.445  .717  5  
5  .027  .703  9  
6  .490  .709  16  
7  .973  .741  41  
8  1.520  .814  91  
9  2.228  .980  216  
10  3.516  1.589  328  

  
Based on the estimated item parameters we can now draw the IRFs, assuming that the 

Rasch model holds (which we do not know yet). These are shown in Figure 5.7.  

 

 
Figure 5.7  
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By adding the curves you get the so-called Test Characteristic Curve or Test Response 

Function (TRF), which indicates how the expected test score depends on the ability of 

the person. This is shown in Figure 5.8. This curve is often S-shaped , but not always. 

That the curve is steeper in the middle, near 0, means that the test discriminates best 

among individuals with ability around 0.  

 

 
Figure 5.8  

The curve is not linear. Thus, if another variable is linearly related to the ability, then it 
does not correlate linearly with the sum scores. GLM can apparently be trashed if you 
want to use the sum scores as a dependent variable or covariate in a follow-up study. 
But in the middle the curve is almost linear. If almost all persons are in that area in 
terms of their ability, there may not be a major problem with GLM. However, that 

situation may not occur.  
Remember now that within a group with the same sum score there are still people 

with different abilities. The sum score is not a perfect measurement of the ability. 

According to Table 5.5, the distribution of abilities is particularly great with the 

extreme sum scores 0 and 10. This is plotted in figure 5.9. This pattern is typical for 

IRT models: extreme sum scores have large measurement errors. Such persons fall 

probably outside the range of the scale.  

The fact that these standard deviations are so different implies that the assumption 

of homogeneous error variances in GLM is not plausible. Nor is it adequate to express 

the reliability of the test in a single number, as is done in classical test theory. 
According to the Rasch model measurements are much more precise for some persons 

than for others.  
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Figure 5.9  

(Sections 5.13 – 5.17 were not translated) 

5.18 The 3PL model  

The three-parameter logistic model (3PL model) (Lord, 1980) states that the IRFs 

have the following form:  
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Here every item has three parameters:  
  

                                           = the difficulty of the item  

                                           = the discrimination parameter of the item  
                                          c = the guessing parameter of the item  
  

Each person has one parameter, , the person’s ability. The IRFS of this model look 

like in figure 5.11. Unlike the Rasch model, the IRFS can cross each other.  
The guessing parameter indicates the minimum of the IRF. That is about the height 

at which the IRF starts in the figure. This stands for the probability that someone with 

an ability of minus infinity still gives the right answer by guessing. Imagine that, 

ability minus infinity.  
All curves are S-shaped in this model. The discrimination parameter indicates how 

steeply the curve increases at its steepest point. The difficulty indicates at which ability 

value the curve is the steepest. The greater the difficulty, the farther to the right is the 

curve. The discrimination parameter indicates how strongly the probability to answer 
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the item correctly depends on a person’s ability. The discrimination parameter is in 

many ways comparable to a factor loading. When determining a total score, an item 

should be weighted more heavily as it has a larger discrimination parameter.  

 

 
Figure 5.11  

In Figure 5.11, item 1 has a high probability of guessing (0.5) and a low discrimination 

parameter (0.5). If these items were exam questions, it would mean that someone who 

knows nothing of the examined topic still has a probability 0.50 to answer the item 

correctly, while this probability increases only slowly as someone has learned more. In 

contrast, item 3 has a smaller guessing probability (0.25) with a large discrimination 

parameter (2), and a high difficulty (2). For persons with ability around 2 (the 

difficulty) the probability to answer the item correctly increases rapidly (high 

discrimination parameter) with their ability.  

To give you an idea of the distinction between discrimination and difficulty: if an 

exam question is unclear or unexpected, this may result in a low discrimination 

parameter. If the question is clear and to be expected, the discrimination parameter may 

be high, but the item can still be difficult or easy.  

The 3PL model is more flexible than the Rasch model, because it has more 

parameters. That is why it is also used more often. In particular, the 3PL model is 

suitable for multiple choice exams, because it has a guessing parameter. The Rasch 

model does not take into account the possibility that guessing can give a correct 

answer, and is therefore not plausible for multiple choice questions.  
Another advantage of the 3PL model is that the probability of guessing the correct 

answer can be estimated from the data. As a result, a substantiated correction for 

guessing can be given when computing the grades. That is much better than the classic 
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assumption that all alternatives are equally likely if someone guesses (Holzinger, 

1924), which is almost always implausible.  

Between the Rasch model and the 3PL model lies the 2PL model (Birnbaum, 1968). 

That is a 3PL model 3 whereby it is assumed that there is no guessing: c = 0 for each 

item. However, the items may still have different discrimination parameters. Because 

of estimation problems with the 3PL model, the 2PL model is used frequently. 





 

6 Conducting and reporting a Mokken 

analysis  
 
 

6.1 Background  

The Rasch model is one of the strictest IRT models, and as a result there are few tests 

for which it holds. Since the 1970s there has been a group of psychometricians who 

feel that such a strict model is not necessary for many applications in the social 

sciences. The Rasch model was developed with cognitive tests in mind, which often 

contain large numbers of items and are widely used to make important decisions about 

individuals. Many scales in the social sciences, however, involve attitude or personality 

questionnaires, which contain a small number of items, which are examined in 

relatively small samples, and which are mainly used in group research. With such 

items, the Rasch model is less plausible and less necessary in the eyes of some (Junker 

& Sijtsma, 2001b).  
For example: the SAT and the ACT are two tests in the United States and are being 

used for admission to universities and colleges. The SAT was administered to more 

than 1.4 million students in 2006 (College Board, 2007). The ACT consists of 215 

items and was administered in 2007 to 1.3 million students (ACT, 2008). Such tests 

have to meet different standards than a scale of 11 items that is used only once in an 

experiment with 50 students to investigate whether an information spot of the Ministry 

of Social Affairs has changed their attitude.  

Partly for this reason, various psychometricians developed nonparametric IRT 
models, in which only ordinal restrictions are imposed. In particular, it is not assumed 

that the IRF is logistic. In the Netherlands, the model of ‘monotonous homogeneity’ 

and ‘double monotonicity’ has been developed by Mokken (1971, 1997, Mokken & 

Lewis, 1982) and extended to items with more than two answer categories by Molenaar 

(1991, 1997). The basic elements of this analysis method are discussed here. In the 
United States and Canada similar models have been developed by Stout (1990) and 

Ramsay (1991), but with different methods of analysis. See Junker and Sijtsma (2001a, 

2001b) and Sijtsma and Meijer (2007) for an overview. (6.2-6.6 not translated) 

6.2 Learning goals  

6.3 Basic report of a Mokken analysis  
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6.4 Running example  

6.5 Design                

6.6 Degree of control  

6.7 Hypothesis  

Mokken (1971) distinguishes two different models. The first is the least restrictive and 

is called monotone homogeneity. It contains the following assumptions:  

  
Unidimensionality. Each person is characterized by one number, which is 

called the ability of the person.  
  
Monotonicity. The probability that the person will give a correct answer to the 

item increases with the ability of the person.  
  
Local independence. The probability that the person answers an item correctly 

depends only on the person’s ability and, given that ability, not on the person’s 

other answers.  

  
With these assumptions it is (in theory) possible to order the persons according to their 

ability, but it is not always possible to order the items consistently in difficulty. The 

latter is possible in the second, slightly more restrictive model, with the following 

additional assumption:  

  
Double monotonicity. Each item is characterized by one number, which is 

called the difficulty of the item. The probability that the person will give a 

correct answer to the item decreases with the difficulty of the item.  

  
The hypothesis which will be discussed here, is that the items satisfy monotone 

homogeneity. The investigation of double monotonicity will not be discussed here. The 

statistical test procedure also assumes that the items have sufficient discrimination in 

the population studied. That is why this will also be mentioned in the hypothesis.  

Explanation  

The ‘ability’ of the persons is viewed as a latent variable, just like a factor in factor 

analysis and a true score in test theory. Thus the ability is not equal to the total score of 

the test. The total score is only an estimate of the ability, just as a sample average is an 

estimate for the population mean.  
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The term ability suggests that it is a cognitive test, but this is only a matter of 

jargon. The analysis can equally well be used for questionnaires and the interpretation 

must then be adjusted according to the content of the questions. Analogously, the term 

‘difficulty’ is only a matter of jargon, and the interpretation must be adapted to the 

content. Suppose the items ask how many times you have been to the pub in the past 

week on each of the days in that week, then ‘ability’ must be interpreted as ‘tendency 

to go to the pub’ rather than a kind of intelligence. That Monday is ‘more difficult’ 

than Friday in that context means that people tend to go to the pub less often on 

Mondays than on Friday.  
The Item Response Function (IRF) shows how the probability of a positive 

answer (‘correct’, ‘yes’, ‘agree’) increases with the ability. Figure 6.1 shows an 

example of four items that meet monotone homogeneity. The IRF can have any form, 

as long as it nowhere goes down. The IRFs illustrated here are purely theoretical. In 

practice, one cannot simply draw the IRFs because the latent abilities of the individuals 

are unknown and can only be estimated (however, see Ramsay, 1991 for a method to 
estimate the IRFs).  

 

 
Figure 6.1  

As you can see in the figure, it is possible that an IRF remains constant over a large 

interval. In the figure, for example, this is the case for Item4 between the values 1 and 

3. This is not strictly in conflict with monotone homogeneity. However, if many 

abilities in the population are concentrated in this interval, the item have low 

discrimination, as these persons have the same probability to answer the item 

positively. The item is therefore useless in that group. The additional requirement of 

sufficient discrimination now says that this situation is not acceptable. For example, in 

Figure 6.1, items 1, 2 and 3 would be sufficiently discriminating for a population with 
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abilities between -1 and +1, but item 4 would not. In a population with abilities 

between 3 and 5, items 3 and 4, on the other hand, would be sufficiently 

discriminating, but items 1 and 2 would not. In a population with abilities from -1 to 5, 

all four items would be sufficiently discriminating. Whether the items are accepted, 

will therefore also depend on the location of the population relative to the IRFs. It is 

possible that in one population item 4 must be removed, while in another population 

items 1 and 2 must be removed, while no item has to be removed if both populations 

are joined.  

We will assume a confirmatory approach, in which the hypothesis exists that the items 

form a scale. A Mokken analysis can also be done in an explorative way, in which case 

a set of items is searched for a subset that forms a scale.  
In a Mokken analysis, double monotonicity is usually also investigated. But in most 

applications the purpose is primarily to measure persons, and not to measure the items. 

The most important hypothesis is therefore monotonic homogeneity, while double 

monotonicity is secondary. Since this is just an introduction, the discussion will be 

limited to monotone homogeneity .  

Example  
The hypothesis is that the items B01 to B12 satisfy monotone homogeneity and each 

have sufficient discrimination in the population.  

  
 (The rest of the chapter is not translated)  

  



 

7 Exercises  
  

 

- Make sure you always use syntax when you analyse a correlation matrix.  

- Subsequent tasks can be more difficult and sometimes there are multiple 

solutions or no solution.  

 

Answer-format  
To streamline any discussion with others you need to report some analyses according 

to the format of the file Answer Sheet.xls. These questions are marked with  Answer 

Sheet. This file is described below. If you do not have the file, you can use the Answer 

Sheet factor analysis which is after the last question. In addition, you also have to 

answer the other questions of the assignment!  

The Answer Sheet.xls file  

This file has three worksheets:  

- Answers: here you write up the design of the analysis and the conclusions.  

- TablesWithReport: paste only output tables on which your conclusions are 

based.  

- All Output: paste all SPSS output associated with the task, so you can still find 

stuff, in case you forgot this in TablesWithReport.  

Parts A to E of the sheet Answers should be completed before you analyse the data. 

Make the other parts after analysing the data. Sometimes certain parts do not apply. 

You have to assess this yourself.   

Exercise 0 

Study carefully the text to be learned before you start with the exercises. It seems that 

some people start with the exercises before reading the text. That is just silly. It saves 

no time at all. It only creates confusion because you do not take the information in a 

logical order. Thus, if you have not yet thoroughly read the text, now is the time to do 

it.  

Exercise 1 

This exercise is about the theoretical concepts. The premise of this book is that you not 

only should you be able to 'do' a factor analysis, but you have to understand some 

theory as well, at least to the extent that can be understood without much mathematics. 
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It is advised to alternate between theory and practise. The theory becomes easier by 

applying it and applying it becomes easier if you understand the theory. Make this task 

before you make the other assignments, and make it a few times again later. The 

ultimate goal should be that you can answer all questions without reverting to the text.  

 

1. What is the purpose of factor analysis?  

2. Which aggregated data serve as input for factor analysis?  

3. What is a confirmatory factor analysis?  

4. What is an exploratory factor analysis?  

5. What is the maximum likelihood criterion?  

6. What is principal component analysis?  

7. What is a factor?  

8. What is a factor loading?  

9. What is a factor pattern?  

10. What is a communality?  

11. What is an eigenvalue?  

12. What are orthogonal factors?  

13. What are skewed factors?  

14. What is rotation?  

15. What varimax rotation?  

16. What is oblique rotation?  

17. What is the null hypothesis in factor analysis?  

18. Which criteria can be used to determine the number of factors?  

19. What is the function of the chi-square statistic?  

20. What does the chi-square depend on?  

21. What is a goodness-of-fit index?  

22. What is the RMSEA?  

23. At what values of RMSEA is there a good / acceptable / bad fit?  

24. What is the minimum eigenvalue criterion?  

25. How do you assess whether a factor is interpretable?  

26. Which items should you remove in scale analysis after a factor analysis?  

Exercise 2 

See exercise 1a. Although it is often instructive to answer open questions, checking 

multiple choice questions is easier. They are also more convenient to provide direct, 

automated feedback. If you completed exercise 1, open the MC Questions.xls program. 

It contains about the same questions, but in multiple choice format. Start the macro / 

add-in Answer Questionnaire. Choose the subject Theory Factor Analysis. When done, 

the questions and answers are displayed in the sheet Answers.  
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Exercise 3 

An important element in factor analysis is the plot of the factor loadings. By 

understanding what it says, you can get a pretty good idea of what a factor analysis 

does, without going into details. In this assignment we will look at that for the 

personality theory of Eysenck. In the theory of Eysenck, based on factor analysis of 

personality tests, the factors Neuroticism, Extraversion and Psychoticism are 

distinguished. Initially, Eysenck distinguished only the dimensions of Neuroticism and 

Extraversion; Psychoticism was only added later. From that time dates the following 

well-known figure, figure 7.1, which is a fair description of a factor analytic theory 

(Eysenck & Eysenck, 1985).  

  

Figure 7.1 (copied with permission from Robinson, 2001, page 1236)  

This Figure is an idealized plot of the factor loadings. Each point in the outer circle 

represents a manifest variable. The variables in this case are, for example, Moody, 

Passive, Sociable, and so on. The factors are Extraversion and Neuroticism. These are 

latent variables that act as axes in the plot. The four classic temperaments in the inner 

circle are shown to clarify the relationship with this classical theory, but do not follow 

from the factor analysis.  
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According to this plot, every manifest personality trait can be seen as a mix of 

Extraversion and Neuroticism plus something that is specific to the trait. For example: 

Excitable (right) corresponds to a mix of high Extraversion and high Neuroticism plus 

something specific Excitable.  

a. Which two variables have the highest correlation with Excitable?  

b. With which two variables does Excitable have the lowest (the strongest 

negative) correlation?  

c. With which four variables does Excitable have a correlation of approximately 

zero?  

d. Make a schematic representation of the correlation matrix of the variables just 

discussed. Indicate the height of the correlations as 'high', 'zero' and '-high', the 

latter representing a strongly negative correlation. 

Exercise 4 

Let's begin to see if you can reproduce with SPSS the analysis of the main text. The 

correlation matrix is the Diesfeldt.sav file.  

a. Do the confirmatory factor analysis described in the text (paragraph 2.10, 

Example 1) and make sure your results are the same:   

1. Open the data file.  

2. In the menu, specify which analysis should be done, but do not click OK 

yet. Ask for ML extraction and one factor.  

3. Instead of clicking OK, click on Paste. A new syntax window pops up with 

in it a syntax command.  

4. Remove the sub commands VARIABLES, MISSING and ANALYSIS. 

Put the subcommand / MATRIX = IN (COR = *) at that location.  

5. Put the cursor in the syntax command.  

6. In the menu bar click on the Play button.  

7. Should it fail, look in Exercise 4a_demo.zip.  

8. Check whether your outcomes match the text.  

b. Do the exploratory factor analysis described in the text (paragraph 2.9), and 

make sure your results are the same (Section 2.10, Example 2).  

c. Complete the Answer Sheet for (b). From now on, this instruction will be 

declared as  Answer Sheet.  

Exercise 5 

Now it is time to apply factor analysis in a simple situation of which you probably 

know the context, but of which you do not yet know the results. The file Statistics 1.sav 

contain the data on Statistics 1 of psychology students at Radboud University some 

years ago. The exam consisted of four partial examinations, A, B, C and D. The scores 

for the partial exams are in the variables a1, b1, c1 and d1 respectively. Exam Part B 

consisted of six questions, and marks for them are given in the variables quest1 to 
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quest6. The contents of these tasks are: (1) basic report of correlation and regression, 

(2) predicted scores and residues, (3) visualisation, (4), conclusions from the 

correlation, (5), contingency tables and the paradox of Simpson, and (6) the intuitive 

scientist. This exercise can also be made without syntax.  

a. How many factors do you expect in quest1 to quest6?  

b. Perform a factor analysis on the six questions of Exam Part B  Answer 

Sheet. If you do not succeed with SPSS, look in exercise 5b_demo.zip.  

c. What is your psychometric evaluation of partial exam B?  

Exercise 6 

See exercise 5. It would be unsatisfactory if a slightly different choice in the analysis 

would yield a completely different result. That is a real danger in factor analysis. To 

what extent is that the case here?  

a. If you have done a confirmatory analysis, do an exploratory analysis now. If 

you've done an exploratory analysis, now do a confirmatory analysis  

Answer Sheet.  

b. Check the extent to which the conclusions match the previous conclusions.  

Exercise 7 

Now we apply factor analysis in a simple situation that has been particularly important 

in theory. In some areas of psychology people are very attached to references to recent 

literature, which would make one believe that humanity is younger than 10 years. It 

can be enlightening to study the classics. The inventor of factor analysis is Spearman 

(1904a). In his research into intelligence he found the following correlations (table 

7.1).  

Table 7.1  

  Classics  French  English  Mathem.  Discrim.  Music  

Classics    0.83  0.78  0.70  0.66  0.63  

French  0.83    0.67  0.67  0.65  0.57  

English  0.78  0.67    0.64  0.54  0.51  

Mathem.  0.70  0.67  0.64    0.45  0.51  

Discrim.  0.66  0.65  0.54  0.45    0.40  

Music  0.63  0.57  0.51  0.51  0.40    

 

The correlations are also in the Spearman.sav file (although these are actually average 

correlations, but let's just ignore that).  

a. Study these correlations and formulate some simple laws for them. Do not 

think too complicated. Good laws are simple. 



128 Factor analysis and item analysis 

 

b. Based on the content of the variables and the correlations, formulate a theory 

about the number of factors in intelligence. Indicate which variables should 

load on which factor.  

c. Test this theory by a factor analysis  Answer Sheet.  

Exercise 8 

See Exercise 7.  

a. If you have done a confirmatory analysis there, do an explorative analysis 

now. If you've done an exploratory analysis, now do a confirmatory analysis 

 Answer Sheet.  

b. Check the extent to which the conclusions match the previous conclusions.  

Exercise 9 

See Exercise 7.  

a. Look up Spearman's article and find out how many factors there are according 

to his theory.  

b. Test this theory, provided you have not already done so  Answer Sheet.  

Exercise 10 

Now we apply factor analysis in a slightly more difficult situation, but the results are 

simple because they correspond nicely with the theory. The file Christel.sav contains 

part of the data of a student. These are data from students too.  

a. View the variable labels of the variables pers1 through pers25. Try to 

formulate a theory on the number of factors based on the contents of the 

variables. Indicate which items would load on which factors, i.e. which factor 

pattern you expect.  

b. Test this theory by a factor analysis  Answer Sheet.  

Exercise 11 

See exercise 10. You may have invented a totally new theory. But a suitable theory 

already exists, so you had to use it, even though the exercise didn’t tell you this. If you 

have used an existing theory, you can skip this assignment. Otherwise, your 

punishment is that you have to make the previous assignment again, but now correctly:  

a. Formulate a theory that agrees with the psychological literature.  

b. Use factor analysis in order to construct appropriate scales  Answer sheet.  

Exercise 12 

Now we apply factor analysis in a situation where the conclusions are less clear. The 

file BPS Jan-Feb 2004 VZ.sav contains data on clients of nursing homes. The caring 

staff completed a questionnaire for each client. One part of the questionnaire consists 

of the BPS (Van Loveren-Huyben et al., 1988). This instrument aims to screen the 
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clients in a house, in order to understand the extent to which various types of care 

needs exist. The items of the BPS are the variables zbps01 to zbps41. Initially, the BPS 

consisted of 33 items. The scales were Cognition, Mood and Contacts. Over the years, 

however, items were added for various substantive reasons. Investigate whether, if you 

take all 41 items into account, there is reason to distinguish more than three scales. 

Determine which scales you would eventually distinguish, and which items they 

contain. Motivate your choice by comparing the results of multiple factor analyses. 

Write this up as a clear comprehensible argument. Provide a clear overview of the 

relevant elements of the output. By the way, have you read in this exercise that the data 

in the file are clean? If you do not know what clean data are, look that up. Investigate 

with procedure Frequencies whether there are strange scores that require your action.  

Exercise 13 

The file Judith.sav contains part of the data of a student. Consider the variables work1 

through work18. Use factor analysis to construct suitable scales. If you do multiple 

analyses, report the ones on which you base the scales.  Answer Sheet (is difficult to 

fill in some places).  

Exercise 14 

Lifestyle.sav The file contains part of the data in an investigation of elderly who are 

living independently (not in a nursing home). Module 3 of the questionnaire is about 

lifestyle. These are the variables v29_0 to v29_65. Use factor analysis to construct 

suitable scales.  

Exercise 15 

The Simms.sav file contains the correlation matrix reported by Simms (2007) as to a 

number of scales for psychological well-being. Consider to what extent it is possible to 

explain the correlations between these scales from one factor 'psychological well-

being'.  

Exercise 16 

The Nivel.sav file contains the correlation matrix reported by the Nivel institute for 14 

scales that were used to evaluate home care by clients. Consider to what extent it is 

possible to reduce these 14 scales to a small number of factors.  

Exercise 17 

The Raven.sav file contains data from several hundreds of children at Raven's Standard 

Progressive Matrices (Monks et al, 1986;. Also see Van der Ven and Ellis, 2000). First, 

find on the Internet or in a book what kind of test this is, so you get an idea of what 

you're dealing with. Next, investigate with these data whether the test is 

unidimensional.  
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Exercise 18 

The Antoine.sav file includes MMPI subtest scores. Investigate the factorial structure 

of the main clinical scales.  

Exercise 19 

The file Gerlinde.sav contains data including the SCL-90 and POMS. What these two 

tests aim to measure is something you can look up yourself, right? Cause I often heard 

people saying that they don’t want to learn something because they can look it up. Go 

ahead. While you're at it, think a moment about why you would want to look for 

something if you can also learn it.  

a. Investigate the factorial structure of the subscales of these two tests.  

b. Describe which problems you encountered and how you solved them.  

c. Describe what is peculiar about the relationship between SCL-90 and POMS.  

Exercise 20 

The Tessa.sav file includes data on the WMS-R (Wechsler Memory Scale Revised) in 

epilepsy patients. Investigate the factorial structure of the subtests. In particular, 

examine the extent to which there is evidence for the hypothesis that there is a 'general 

memory', analogous to the concept of 'general intelligence'.  

Exercise 21 

The Annicka.sav file contains data about an investigation into quitting among smokers.  

a. Investigate the factorial structure of items v33 through v52 with the aim of 

constructing (sub) scales.  

b. Describe which problems you encountered and how you solved them.  

Exercise 22 

Watson and Tellegen (1985, p. 221) show Figure 7-2 on the relationships between 

various self-ratings of moods. The figure is based on factor analysis.  

a. Watson and Tellegen explain the figure with the following text. Fill in the 

missing words. You must of course fill them in on the basis of your knowledge 

of factor analysis. To check if it is correct, you can look up the article.  

The figure can be interpreted in the following manner. Terms of the 

same octant are highly ... (1) ... correlated, whereas those in adjacent 

octants are ... (2) ... correlated. Words 900 apart are essentially ... (3) ... 

to one another, whereas those 1800 apart are ... (4) ... in meaning and 

highly ... (5) ... correlated.  

b. The factors (axes) of two possible rotations are also shown in the figure. In the 

so-called unrotated solution of a factor analysis the first principal factor or 

principal component is the one with the greatest eigenvalue. Which factor is 

the first principal factor in this figure?  
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Figure 7.2 (Copyright © 1985 by the American Psychological Association. (Reproduced with permission. The 

official citation that should be used in referencing this material is Watson, D., & Tellegen, A., 1985, 'Toward a 

consensual structure of mood', Psychological Bulletin, 98, 219-235. The use of APA information does not imply 

endorsement by APA) 

Exercise 23 

Izard et al. (1993) used the Differential Emotions Scale (DES-IV) in 88 women for a 

period of three years after the birth of their child. This instrument consists of 12 

subscales of about three items each. The correlation matrix of the subscale scores is 

given in the DES.sav file. Investigate to what extent the correlations of the subscales 

can be explained by a small number of factors.  

Exercise 24 

Church et al. (1999) had about two hundred students rating their mood of that day on a 

large number of adjectives. A second group of students had to do the same for their 

mood of the past week. A factor analysis was done in both groups. Since the factor 

patterns of the two groups were similar to each other, they were given in the same 

table; see Figures 7.3 and 7.4. Oops, that's where my cup of coffee spills over the factor 

names. Can you please tell me again what the names were?  
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Figure 7.3 (Copyright © 1999 by Blackwell Publishers. Reproduced with permission from Church 

et al. (1999)) 
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Figure 7.4 (Copyright © 1999 by Blackwell Publishers. Reproduced with permission from Church 

et al. (1999)) 
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Exercise 25 

Make the questions on the subject Visualise Factor Analysis of MC Questions.xls 

program (For an explanation, see Section 2.17).  

Exercise 26 

Repeat the reliability analysis of Diesfeldt's data, as stated in the text.  

Exercise 27 

See Exercise 5. Perform a reliability analysis for the marks in Statistics 1 exam Part B.  

Exercise 28 

See exercise 12 on the BPS. Perform a reliability analysis for each of the subscales that 

you constructed with the factor analysis. Assume five factors (not because that is 

unambiguously better, but to make sure that everyone is doing about the same 

analysis). Do not forget to clean the data first! You can do that with the syntax below. 

Both commands must be executed.  

recode zbps01 to zbps41 (9 = sysmis).  

execute.  

To check, the first two scales are:  

 zbps33 zbps40 zbps17 zbps41 zbps15 zbps20 zbps39 zbps10 zbps13 zbps25 

zbps08 zbps22 zbps21  

 and zbps23 zbps32 zbps07 zbps30 zbps27 zbps05 zbps35 zbps16  

Exercise 29 

See exercise 17 on the Raven test. Perform a reliability analysis for this test.  

Exercise 30 

See exercise 20 on the WMS-R. Investigate with reliability analysis to what extent it is 

reasonable to combine the subtests scores into one total score.  

Exercise 31 

See exercise 28 about the BPS. Calculate the subscale scores, and then their 

correlations. Also calculate the disattenuated correlations between the subscales (i.e., 

the true-score correlations).  

Exercise 32 

See exercise 28 on the BPS. Calculate the standard errors of measurement for each of 

the subscales.  

Exercise 33 

Open the program with multiple choice questions and complete the questions about 

reliability.  
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Exercise 34 

a. Explain why factor analysis is not strictly suitable for item analysis.  

b. Explain the assumptions of the Rasch model.  

c. Describe the characteristics of the IRFS in the Rasch model  

d. Name the estimation methods you know for the Rasch model. Describe the 

main differences between these estimation methods (what do they estimate and 

under which assumption).  

e. Describe which model violations the three R-tests are most sensitive to.  

Exercise 35 

Table 7.2 shows a number of possible outcomes of the R-tests. Indicate in which cases 

the scale is unidimensional.  

Table 7.2  

Test  R 0  R 1  R 2  Decision  

a  p = 0.01  p = 0.01  p = 0.01    

B  p = 0.01  p = 0.2  p = 0.2    

C  p = 0.1  p = 0.01  p = 0.2    

D  p = 0.1  p = 0.1  p = 0.02    

E  p = 0.2  p = 0.3  p = 0.1    

Exercise 36 

In Figure 7-5 are three IRFs of the Rasch model. What are the difficulties of these 

items?  

  

Figure 7.5  
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Exercise 37 

In Figure 7.6, five IRFs of the Rasch model are given. Draw the test response function 

as accurately as possible without calculating. Where does the function run almost 

horizontally? Draw schematically how the standard error of measurement depends on 

the abilities of the subjects (this might not be described exactly in the text). Verify your 

outcomes with the Excel program IRT plots.xlsm by using the buttons Easier and 

Harder.  

 
 

Figure 7.6  

Exercise 38 

The Excel program IRT plots.xlsm allows you to try the effect of the item parameters in 

the Test Response Function and the standard error of measurement. Play and observe.  

Reset all items. Consider what happens to the standard error of measurement when 

you give item 3 a very large discrimination parameter. The same if you also give item 5 

a large discrimination parameter.  

Exercise 39 

Explain the differences between the 1PL, 2PL, and 3PL model. Which model is 

preferable for multiple choice questions?  

Exercise 40 

Open the program with multiple choice questions and complete the questions about 

IRT.  
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Exercise 41 

a. State the assumptions of monotone homogeneity and explain them. 

b. Draw an example of three unequal IRFs that comply with monotone 

homogeneity. 

c. Which of kind of correlations are the target of a prediction by the Mokken 

model, and what is the content of this prediction? 

d. What kind of correlations are being used in an analysis with MSP? 

e. Explain what manifest monotonicity is. 

f. Describe the three types of H coefficients in an analysis of monotone 

homogeneity. 

g. Describe the decision rule in an analysis of monotonous homogeneity. 
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Answer sheet factor analysis
  

The following questions correspond to the answer format of the file Answersheet.xls. A 

round  indicates that a choice must be made. A square  indicates that a yes or no 

answer has to be given, wherein yes may be chosen more than once. Square brackets 

with gray markings [...] indicate an open question; something needs to be written there.  

  

Given the research question, what kind of factor analysis would you do here:  

-  explorative                confirmatory  

  

Given the research question and chosen kind of analysis, which choice do you make 

during the analysis:  

- Extraction Method:  PCA  ML  

- Factors:  minimum eigenvalue [bound]  number of factors [how many]  

- Rotation:  Varimax  Promax  

 

Given the research question and chosen kind of analysis and output, on what criteria 

you base the decision  

- Eigenvalues   

- p-value and RMSEA   

- Interpretability of the factor pattern   

 

Given the research question and output and the decision criterion, what is your 

decision:  

 More factors are required.  

 Maybe more factors are needed.  

 The number of factors is all right.  

 Maybe fewer factors are needed.  

 Fewer factors are required.  

 

Given the research question and output and decision:  

- Give an interpretation of the factors [name each factor]  

- Indicate which factors are not interpretable [numbers of the factors]  

- Specify which items should be removed [numbers of the items]  

- Indicate which scales are to be made [per scale the item numbers]  
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Given the research question, output, decision and interpretation:  

- Is a new factor analysis needed?   

 

Given the research question and output:  

- Write a concise report [text]  
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